generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

spanish_mlm-test

This model is a fine-tuned version of che111/spanish_mlm on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 29 6.2056
No log 2.0 58 5.2656
No log 3.0 87 4.3991
5.6534 4.0 116 3.8990
5.6534 5.0 145 3.5027
5.6534 6.0 174 3.1796
5.6534 7.0 203 2.9333
3.4402 8.0 232 2.7876
3.4402 9.0 261 2.6124
3.4402 10.0 290 2.5648
3.4402 11.0 319 2.4046
2.7185 12.0 348 2.3318
2.7185 13.0 377 2.2789
2.7185 14.0 406 2.2100
2.7185 15.0 435 2.1735
2.3867 16.0 464 2.1337
2.3867 17.0 493 2.0764
2.3867 18.0 522 1.9848
2.3867 19.0 551 1.9665
2.1706 20.0 580 1.9613
2.1706 21.0 609 1.8838
2.1706 22.0 638 1.8762
2.1706 23.0 667 1.8094
2.0165 24.0 696 1.7878
2.0165 25.0 725 1.8003
2.0165 26.0 754 1.7663
2.0165 27.0 783 1.7745
1.9005 28.0 812 1.7461
1.9005 29.0 841 1.6817
1.9005 30.0 870 1.6689
1.8118 31.0 899 1.6837
1.8118 32.0 928 1.6755
1.8118 33.0 957 1.6501
1.8118 34.0 986 1.6231
1.7355 35.0 1015 1.6412
1.7355 36.0 1044 1.6010
1.7355 37.0 1073 1.5781
1.7355 38.0 1102 1.5689
1.6732 39.0 1131 1.5261
1.6732 40.0 1160 1.5822
1.6732 41.0 1189 1.5301
1.6732 42.0 1218 1.5308
1.6195 43.0 1247 1.5241
1.6195 44.0 1276 1.5375
1.6195 45.0 1305 1.5058
1.6195 46.0 1334 1.4599
1.572 47.0 1363 1.4809
1.572 48.0 1392 1.4875
1.572 49.0 1421 1.4727
1.572 50.0 1450 1.4515
1.5337 51.0 1479 1.4434
1.5337 52.0 1508 1.4363
1.5337 53.0 1537 1.4378
1.5337 54.0 1566 1.4287
1.4995 55.0 1595 1.4178
1.4995 56.0 1624 1.4197
1.4995 57.0 1653 1.3979
1.4643 58.0 1682 1.3908
1.4643 59.0 1711 1.4155
1.4643 60.0 1740 1.3825
1.4643 61.0 1769 1.3927
1.4384 62.0 1798 1.3735
1.4384 63.0 1827 1.3627
1.4384 64.0 1856 1.3734
1.4384 65.0 1885 1.3464
1.4108 66.0 1914 1.3433
1.4108 67.0 1943 1.3657
1.4108 68.0 1972 1.3687
1.4108 69.0 2001 1.3432
1.386 70.0 2030 1.3183
1.386 71.0 2059 1.3282
1.386 72.0 2088 1.3095
1.386 73.0 2117 1.3338
1.3613 74.0 2146 1.3174
1.3613 75.0 2175 1.2883
1.3613 76.0 2204 1.3092
1.3613 77.0 2233 1.2946
1.3425 78.0 2262 1.2778
1.3425 79.0 2291 1.2610
1.3425 80.0 2320 1.2839
1.3425 81.0 2349 1.3171
1.3247 82.0 2378 1.2946
1.3247 83.0 2407 1.2650
1.3247 84.0 2436 1.2551
1.302 85.0 2465 1.2621
1.302 86.0 2494 1.2472
1.302 87.0 2523 1.2680
1.302 88.0 2552 1.2671
1.2827 89.0 2581 1.2698
1.2827 90.0 2610 1.2421
1.2827 91.0 2639 1.2185
1.2827 92.0 2668 1.2431
1.2688 93.0 2697 1.2255
1.2688 94.0 2726 1.2262
1.2688 95.0 2755 1.2346
1.2688 96.0 2784 1.2253
1.2567 97.0 2813 1.2149
1.2567 98.0 2842 1.2308
1.2567 99.0 2871 1.2536
1.2567 100.0 2900 1.2383
1.2433 101.0 2929 1.2042
1.2433 102.0 2958 1.2217
1.2433 103.0 2987 1.1983
1.2433 104.0 3016 1.2058
1.2271 105.0 3045 1.2128
1.2271 106.0 3074 1.1883
1.2271 107.0 3103 1.2038
1.2271 108.0 3132 1.2049
1.2195 109.0 3161 1.1882
1.2195 110.0 3190 1.2126
1.2195 111.0 3219 1.1865
1.2041 112.0 3248 1.2186
1.2041 113.0 3277 1.1994
1.2041 114.0 3306 1.1933
1.2041 115.0 3335 1.1601
1.1931 116.0 3364 1.1810
1.1931 117.0 3393 1.1814
1.1931 118.0 3422 1.1811
1.1931 119.0 3451 1.1829
1.1826 120.0 3480 1.1730
1.1826 121.0 3509 1.1866
1.1826 122.0 3538 1.1506
1.1826 123.0 3567 1.1904
1.1717 124.0 3596 1.1589
1.1717 125.0 3625 1.1902
1.1717 126.0 3654 1.1917
1.1717 127.0 3683 1.1570
1.1588 128.0 3712 1.1627
1.1588 129.0 3741 1.1668
1.1588 130.0 3770 1.1286
1.1588 131.0 3799 1.1477
1.1542 132.0 3828 1.1307
1.1542 133.0 3857 1.1309
1.1542 134.0 3886 1.1455
1.1542 135.0 3915 1.1597
1.1418 136.0 3944 1.1441
1.1418 137.0 3973 1.1477
1.1418 138.0 4002 1.1350
1.1418 139.0 4031 1.1563
1.1359 140.0 4060 1.1261
1.1359 141.0 4089 1.1419
1.1359 142.0 4118 1.1149
1.1268 143.0 4147 1.1389
1.1268 144.0 4176 1.1031
1.1268 145.0 4205 1.1433
1.1268 146.0 4234 1.1319
1.1171 147.0 4263 1.1318
1.1171 148.0 4292 1.1453
1.1171 149.0 4321 1.1314
1.1171 150.0 4350 1.1239
1.1134 151.0 4379 1.1290
1.1134 152.0 4408 1.1148
1.1134 153.0 4437 1.1272
1.1134 154.0 4466 1.1218
1.1033 155.0 4495 1.1259
1.1033 156.0 4524 1.1306
1.1033 157.0 4553 1.1340
1.1033 158.0 4582 1.1114
1.094 159.0 4611 1.1415
1.094 160.0 4640 1.1184
1.094 161.0 4669 1.1101
1.094 162.0 4698 1.0919
1.0892 163.0 4727 1.1161
1.0892 164.0 4756 1.1037
1.0892 165.0 4785 1.1010
1.0892 166.0 4814 1.1099
1.0864 167.0 4843 1.1079
1.0864 168.0 4872 1.0875
1.0864 169.0 4901 1.1085
1.0771 170.0 4930 1.1063
1.0771 171.0 4959 1.0844
1.0771 172.0 4988 1.1221
1.0771 173.0 5017 1.0886
1.0691 174.0 5046 1.1019
1.0691 175.0 5075 1.0966
1.0691 176.0 5104 1.0899
1.0691 177.0 5133 1.0889
1.0643 178.0 5162 1.0941
1.0643 179.0 5191 1.1090
1.0643 180.0 5220 1.0913
1.0643 181.0 5249 1.0715
1.0605 182.0 5278 1.0801
1.0605 183.0 5307 1.0928
1.0605 184.0 5336 1.1143
1.0605 185.0 5365 1.0716
1.0547 186.0 5394 1.0828
1.0547 187.0 5423 1.0955
1.0547 188.0 5452 1.0745
1.0547 189.0 5481 1.0741
1.0518 190.0 5510 1.0781
1.0518 191.0 5539 1.0971
1.0518 192.0 5568 1.0916
1.0518 193.0 5597 1.1121
1.0434 194.0 5626 1.0991
1.0434 195.0 5655 1.0745
1.0434 196.0 5684 1.0862
1.0388 197.0 5713 1.0837
1.0388 198.0 5742 1.0665
1.0388 199.0 5771 1.0320
1.0388 200.0 5800 1.0648
1.0349 201.0 5829 1.0792
1.0349 202.0 5858 1.0661
1.0349 203.0 5887 1.0804
1.0349 204.0 5916 1.0838
1.0335 205.0 5945 1.0839
1.0335 206.0 5974 1.0862
1.0335 207.0 6003 1.0787
1.0335 208.0 6032 1.0981
1.027 209.0 6061 1.0768
1.027 210.0 6090 1.0805
1.027 211.0 6119 1.0620
1.027 212.0 6148 1.0728
1.0269 213.0 6177 1.0643
1.0269 214.0 6206 1.0505
1.0269 215.0 6235 1.0724
1.0269 216.0 6264 1.0534
1.0207 217.0 6293 1.0782
1.0207 218.0 6322 1.0527
1.0207 219.0 6351 1.0566
1.0207 220.0 6380 1.0765
1.0176 221.0 6409 1.0635
1.0176 222.0 6438 1.0613
1.0176 223.0 6467 1.0326
1.0165 224.0 6496 1.0610
1.0165 225.0 6525 1.0707
1.0165 226.0 6554 1.0692
1.0165 227.0 6583 1.0323
1.0111 228.0 6612 1.0592
1.0111 229.0 6641 1.0567
1.0111 230.0 6670 1.0606
1.0111 231.0 6699 1.0468
1.0068 232.0 6728 1.0696
1.0068 233.0 6757 1.0476
1.0068 234.0 6786 1.0600
1.0068 235.0 6815 1.0687
1.0072 236.0 6844 1.0571
1.0072 237.0 6873 1.0570
1.0072 238.0 6902 1.0581
1.0072 239.0 6931 1.0599
1.0024 240.0 6960 1.0107
1.0024 241.0 6989 1.0555
1.0024 242.0 7018 1.0404
1.0024 243.0 7047 1.0488
1.0032 244.0 7076 1.0581
1.0032 245.0 7105 1.0641
1.0032 246.0 7134 1.0560
1.0032 247.0 7163 1.0679
1.0001 248.0 7192 1.0591
1.0001 249.0 7221 1.0377
1.0001 250.0 7250 1.0308
1.0001 251.0 7279 1.0657
0.9982 252.0 7308 1.0495
0.9982 253.0 7337 1.0465
0.9982 254.0 7366 1.0666
0.9972 255.0 7395 1.0310
0.9972 256.0 7424 1.0534
0.9972 257.0 7453 1.0475
0.9972 258.0 7482 1.0785
0.9966 259.0 7511 1.0585
0.9966 260.0 7540 1.0402
0.9966 261.0 7569 1.0742
0.9966 262.0 7598 1.0515
0.989 263.0 7627 1.0387
0.989 264.0 7656 1.0431
0.989 265.0 7685 1.0462
0.989 266.0 7714 1.0800
0.9895 267.0 7743 1.0430
0.9895 268.0 7772 1.0477
0.9895 269.0 7801 1.0392
0.9895 270.0 7830 1.0514
0.9879 271.0 7859 1.0701
0.9879 272.0 7888 1.0421
0.9879 273.0 7917 1.0607
0.9879 274.0 7946 1.0170
0.9861 275.0 7975 1.0333
0.9861 276.0 8004 1.0271
0.9861 277.0 8033 1.0473
0.9861 278.0 8062 1.0309
0.9845 279.0 8091 1.0426
0.9845 280.0 8120 1.0488
0.9845 281.0 8149 1.0348
0.9844 282.0 8178 1.0331
0.9844 283.0 8207 1.0226
0.9844 284.0 8236 1.0183
0.9844 285.0 8265 1.0398
0.9841 286.0 8294 1.0406
0.9841 287.0 8323 1.0119
0.9841 288.0 8352 1.0401
0.9841 289.0 8381 1.0484
0.9851 290.0 8410 1.0065
0.9851 291.0 8439 1.0767
0.9851 292.0 8468 1.0563
0.9851 293.0 8497 1.0265
0.9848 294.0 8526 1.0661
0.9848 295.0 8555 1.0324
0.9848 296.0 8584 1.0449
0.9848 297.0 8613 1.0195
0.9801 298.0 8642 1.0250
0.9801 299.0 8671 1.0486
0.9801 300.0 8700 1.0223

Framework versions