<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
my_MFCC_VITmodelBB1
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6219
- Accuracy: 0.7905
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.89 | 6 | 0.6992 | 0.4286 |
0.6972 | 1.93 | 13 | 0.6895 | 0.5238 |
0.6871 | 2.96 | 20 | 0.6864 | 0.5333 |
0.6871 | 4.0 | 27 | 0.6861 | 0.4952 |
0.6773 | 4.89 | 33 | 0.6688 | 0.5905 |
0.6566 | 5.93 | 40 | 0.6430 | 0.6476 |
0.6566 | 6.96 | 47 | 0.6324 | 0.7048 |
0.645 | 8.0 | 54 | 0.6366 | 0.6286 |
0.6301 | 8.89 | 60 | 0.6606 | 0.6095 |
0.6301 | 9.93 | 67 | 0.6978 | 0.5524 |
0.6506 | 10.96 | 74 | 0.6490 | 0.5905 |
0.6829 | 12.0 | 81 | 0.7852 | 0.4286 |
0.6829 | 12.89 | 87 | 0.6921 | 0.5810 |
0.7127 | 13.93 | 94 | 0.6762 | 0.5238 |
0.6481 | 14.96 | 101 | 0.6040 | 0.7048 |
0.6481 | 16.0 | 108 | 0.6528 | 0.6381 |
0.5894 | 16.89 | 114 | 0.5585 | 0.7810 |
0.6039 | 17.93 | 121 | 0.5628 | 0.7048 |
0.6039 | 18.96 | 128 | 0.5348 | 0.7333 |
0.5583 | 20.0 | 135 | 0.6059 | 0.6952 |
0.5176 | 20.89 | 141 | 0.5214 | 0.7810 |
0.5176 | 21.93 | 148 | 0.4461 | 0.7905 |
0.4893 | 22.96 | 155 | 0.4907 | 0.7810 |
0.4869 | 24.0 | 162 | 0.5851 | 0.7143 |
0.4869 | 24.89 | 168 | 0.5113 | 0.7429 |
0.4905 | 25.93 | 175 | 0.4503 | 0.7810 |
0.4197 | 26.96 | 182 | 0.4710 | 0.7905 |
0.4197 | 28.0 | 189 | 0.4741 | 0.7905 |
0.4006 | 28.89 | 195 | 0.6672 | 0.6857 |
0.4254 | 29.93 | 202 | 0.4445 | 0.8 |
0.4254 | 30.96 | 209 | 0.4773 | 0.7905 |
0.3684 | 32.0 | 216 | 0.6279 | 0.7238 |
0.3869 | 32.89 | 222 | 0.5426 | 0.7524 |
0.3869 | 33.93 | 229 | 0.5735 | 0.7143 |
0.3498 | 34.96 | 236 | 0.4384 | 0.8095 |
0.3473 | 36.0 | 243 | 0.3578 | 0.8476 |
0.3473 | 36.89 | 249 | 0.4701 | 0.8381 |
0.2938 | 37.93 | 256 | 0.4497 | 0.8 |
0.295 | 38.96 | 263 | 0.5193 | 0.8 |
0.34 | 40.0 | 270 | 0.4324 | 0.8095 |
0.34 | 40.89 | 276 | 0.4218 | 0.8286 |
0.3022 | 41.93 | 283 | 0.4222 | 0.8 |
0.2974 | 42.96 | 290 | 0.4326 | 0.8095 |
0.2974 | 44.0 | 297 | 0.5216 | 0.7524 |
0.3254 | 44.89 | 303 | 0.4243 | 0.8 |
0.2762 | 45.93 | 310 | 0.4856 | 0.8 |
0.2762 | 46.96 | 317 | 0.6328 | 0.7619 |
0.2528 | 48.0 | 324 | 0.5752 | 0.7619 |
0.2852 | 48.89 | 330 | 0.4740 | 0.7619 |
0.2852 | 49.93 | 337 | 0.4864 | 0.7810 |
0.2873 | 50.96 | 344 | 0.3578 | 0.8476 |
0.2691 | 52.0 | 351 | 0.5690 | 0.7905 |
0.2691 | 52.89 | 357 | 0.5617 | 0.7524 |
0.2544 | 53.93 | 364 | 0.5176 | 0.7619 |
0.2246 | 54.96 | 371 | 0.5027 | 0.7810 |
0.2246 | 56.0 | 378 | 0.5262 | 0.8 |
0.1834 | 56.89 | 384 | 0.6567 | 0.7143 |
0.2051 | 57.93 | 391 | 0.4150 | 0.8286 |
0.2051 | 58.96 | 398 | 0.4880 | 0.8 |
0.1694 | 60.0 | 405 | 0.5683 | 0.8 |
0.2246 | 60.89 | 411 | 0.4442 | 0.8 |
0.2246 | 61.93 | 418 | 0.4901 | 0.8 |
0.2184 | 62.96 | 425 | 0.6485 | 0.7714 |
0.1869 | 64.0 | 432 | 0.3877 | 0.8381 |
0.1869 | 64.89 | 438 | 0.5256 | 0.7619 |
0.1963 | 65.93 | 445 | 0.5285 | 0.8190 |
0.1792 | 66.96 | 452 | 0.6391 | 0.7714 |
0.1792 | 68.0 | 459 | 0.5738 | 0.7810 |
0.1853 | 68.89 | 465 | 0.5518 | 0.7905 |
0.1735 | 69.93 | 472 | 0.5239 | 0.7905 |
0.1735 | 70.96 | 479 | 0.5718 | 0.7619 |
0.2244 | 72.0 | 486 | 0.6423 | 0.7238 |
0.1863 | 72.89 | 492 | 0.4858 | 0.8190 |
0.1863 | 73.93 | 499 | 0.5777 | 0.7714 |
0.1704 | 74.96 | 506 | 0.7484 | 0.7238 |
0.1602 | 76.0 | 513 | 0.4144 | 0.8286 |
0.1602 | 76.89 | 519 | 0.5055 | 0.7905 |
0.213 | 77.93 | 526 | 0.4514 | 0.8286 |
0.1649 | 78.96 | 533 | 0.5630 | 0.7810 |
0.143 | 80.0 | 540 | 0.4911 | 0.8 |
0.143 | 80.89 | 546 | 0.5678 | 0.8 |
0.146 | 81.93 | 553 | 0.5183 | 0.8095 |
0.1437 | 82.96 | 560 | 0.4870 | 0.8190 |
0.1437 | 84.0 | 567 | 0.5785 | 0.7905 |
0.1341 | 84.89 | 573 | 0.4781 | 0.8286 |
0.1338 | 85.93 | 580 | 0.5996 | 0.7714 |
0.1338 | 86.96 | 587 | 0.4562 | 0.8190 |
0.151 | 88.0 | 594 | 0.5412 | 0.8 |
0.1563 | 88.89 | 600 | 0.5578 | 0.8 |
0.1563 | 89.93 | 607 | 0.4887 | 0.8095 |
0.1675 | 90.96 | 614 | 0.5019 | 0.8286 |
0.143 | 92.0 | 621 | 0.5886 | 0.8286 |
0.143 | 92.89 | 627 | 0.6617 | 0.7714 |
0.1297 | 93.93 | 634 | 0.5459 | 0.8 |
0.1324 | 94.96 | 641 | 0.4964 | 0.8476 |
0.1324 | 96.0 | 648 | 0.5943 | 0.7905 |
0.1184 | 96.89 | 654 | 0.5569 | 0.8190 |
0.1353 | 97.93 | 661 | 0.5658 | 0.8 |
0.1353 | 98.96 | 668 | 0.4988 | 0.8286 |
0.1453 | 100.0 | 675 | 0.5139 | 0.8381 |
0.1199 | 100.89 | 681 | 0.3940 | 0.8571 |
0.1199 | 101.93 | 688 | 0.7182 | 0.7905 |
0.1146 | 102.96 | 695 | 0.5160 | 0.8571 |
0.1443 | 104.0 | 702 | 0.5322 | 0.8286 |
0.1443 | 104.89 | 708 | 0.5253 | 0.7714 |
0.114 | 105.93 | 715 | 0.4885 | 0.8286 |
0.1127 | 106.96 | 722 | 0.4731 | 0.8286 |
0.1127 | 108.0 | 729 | 0.5328 | 0.8286 |
0.1246 | 108.89 | 735 | 0.4581 | 0.8286 |
0.1475 | 109.93 | 742 | 0.4775 | 0.8476 |
0.1475 | 110.96 | 749 | 0.5842 | 0.7905 |
0.1323 | 112.0 | 756 | 0.5865 | 0.8286 |
0.088 | 112.89 | 762 | 0.4749 | 0.8476 |
0.088 | 113.93 | 769 | 0.4144 | 0.8381 |
0.1012 | 114.96 | 776 | 0.3921 | 0.8476 |
0.1363 | 116.0 | 783 | 0.4973 | 0.8190 |
0.1363 | 116.89 | 789 | 0.5272 | 0.7810 |
0.0992 | 117.93 | 796 | 0.5764 | 0.8095 |
0.1008 | 118.96 | 803 | 0.6119 | 0.8190 |
0.1315 | 120.0 | 810 | 0.4981 | 0.8381 |
0.1315 | 120.89 | 816 | 0.6413 | 0.7714 |
0.1161 | 121.93 | 823 | 0.5388 | 0.8095 |
0.0904 | 122.96 | 830 | 0.4144 | 0.8857 |
0.0904 | 124.0 | 837 | 0.4444 | 0.8381 |
0.075 | 124.89 | 843 | 0.3987 | 0.8667 |
0.0848 | 125.93 | 850 | 0.5431 | 0.8476 |
0.0848 | 126.96 | 857 | 0.6031 | 0.8095 |
0.0902 | 128.0 | 864 | 0.3599 | 0.8476 |
0.0925 | 128.89 | 870 | 0.5004 | 0.8381 |
0.0925 | 129.93 | 877 | 0.4638 | 0.8476 |
0.1178 | 130.96 | 884 | 0.4881 | 0.8667 |
0.1254 | 132.0 | 891 | 0.6026 | 0.7905 |
0.1254 | 132.89 | 897 | 0.4601 | 0.8476 |
0.1052 | 133.33 | 900 | 0.6219 | 0.7905 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3