generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

mistral7b_darulm_unigram_1e_20_10_23

This model is a fine-tuned version of mistral_rulm_unigram_init_20_10_23 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.1631 0.01 1000 3.1804 0.4182
3.1124 0.02 2000 3.1065 0.4272
3.0757 0.03 3000 3.0894 0.4288
3.0488 0.04 4000 3.0630 0.4319
3.0403 0.05 5000 3.0423 0.4336
3.0172 0.05 6000 3.0384 0.4343
3.0102 0.06 7000 3.0267 0.4360
2.9888 0.07 8000 3.0190 0.4361
3.0024 0.08 9000 3.0040 0.4385
2.9948 0.09 10000 3.0058 0.4378
2.9774 0.1 11000 2.9962 0.4389
2.9818 0.11 12000 2.9964 0.4390
2.9771 0.12 13000 2.9913 0.4396
2.9786 0.13 14000 2.9915 0.4391
2.9866 0.14 15000 2.9924 0.4394
2.9751 0.14 16000 2.9918 0.4389
2.9702 0.15 17000 2.9926 0.4393
2.9695 0.16 18000 2.9816 0.4401
2.9615 0.17 19000 2.9826 0.4402
2.9609 0.18 20000 2.9791 0.4406
2.9607 0.19 21000 2.9684 0.4416
2.9533 0.2 22000 2.9677 0.4422
2.9513 0.21 23000 2.9676 0.4421
2.9563 0.22 24000 2.9610 0.4429
2.9466 0.23 25000 2.9627 0.4424
2.9431 0.24 26000 2.9590 0.4424
2.9412 0.24 27000 2.9525 0.4436
2.9299 0.25 28000 2.9504 0.4435
2.9332 0.26 29000 2.9486 0.4435
2.9255 0.27 30000 2.9425 0.4442
2.9242 0.28 31000 2.9459 0.4434
2.9242 0.29 32000 2.9378 0.4445
2.9267 0.3 33000 2.9316 0.4453
2.9151 0.31 34000 2.9315 0.4454
2.9105 0.32 35000 2.9286 0.4456
2.9053 0.33 36000 2.9242 0.4457
2.9023 0.33 37000 2.9195 0.4466
2.8946 0.34 38000 2.9177 0.4468
2.9037 0.35 39000 2.9147 0.4470
2.8893 0.36 40000 2.9130 0.4468
2.8891 0.37 41000 2.9055 0.4481
2.8851 0.38 42000 2.9017 0.4485
2.8909 0.39 43000 2.9011 0.4483
2.896 0.4 44000 2.9061 0.4479
2.8918 0.41 45000 2.9043 0.4479
2.8847 0.42 46000 2.8954 0.4490
2.8749 0.42 47000 2.8912 0.4494
2.8832 0.43 48000 2.8912 0.4496
2.8745 0.44 49000 2.8853 0.4500
2.8717 0.45 50000 2.8834 0.4502
2.8659 0.46 51000 2.8831 0.4503
2.865 0.47 52000 2.8784 0.4505
2.8575 0.48 53000 2.8763 0.4508
2.8571 0.49 54000 2.8741 0.4513
2.8554 0.5 55000 2.8704 0.4514
2.8526 0.51 56000 2.8669 0.4519
2.8521 0.52 57000 2.8618 0.4525
2.8398 0.52 58000 2.8600 0.4522
2.8398 0.53 59000 2.8576 0.4528
2.837 0.54 60000 2.8536 0.4528
2.837 0.55 61000 2.8519 0.4535
2.8427 0.56 62000 2.8493 0.4536
2.8365 0.57 63000 2.8468 0.4541
2.8327 0.58 64000 2.8447 0.4539
2.8289 0.59 65000 2.8388 0.4546
2.8166 0.6 66000 2.8346 0.4547
2.8171 0.61 67000 2.8294 0.4558
2.8184 0.61 68000 2.8269 0.4556
2.8102 0.62 69000 2.8243 0.4563
2.8153 0.63 70000 2.8211 0.4564
2.8035 0.64 71000 2.8185 0.4569
2.8042 0.65 72000 2.8206 0.4569
2.7984 0.66 73000 2.8138 0.4574
2.7883 0.67 74000 2.8112 0.4574
2.7962 0.68 75000 2.8056 0.4584
2.7937 0.69 76000 2.8068 0.4582
2.7853 0.7 77000 2.8011 0.4588
2.7798 0.71 78000 2.7954 0.4597
2.7851 0.71 79000 2.7913 0.4598
2.7831 0.72 80000 2.7897 0.4600
2.7773 0.73 81000 2.7862 0.4603
2.7688 0.74 82000 2.7836 0.4609
2.7658 0.75 83000 2.7798 0.4610
2.7622 0.76 84000 2.7815 0.4612
2.7691 0.77 85000 2.7783 0.4612
2.7579 0.78 86000 2.7712 0.4619
2.7614 0.79 87000 2.7673 0.4625
2.7592 0.8 88000 2.7691 0.4623
2.7551 0.8 89000 2.7607 0.4634
2.7397 0.81 90000 2.7579 0.4637
2.7357 0.82 91000 2.7580 0.4636
2.7452 0.83 92000 2.7517 0.4643
2.7418 0.84 93000 2.7533 0.4641
2.7379 0.85 94000 2.7481 0.4647
2.7308 0.86 95000 2.7460 0.4654
2.727 0.87 96000 2.7408 0.4655
2.7282 0.88 97000 2.7351 0.4664
2.7133 0.89 98000 2.7301 0.4669
2.7136 0.9 99000 2.7251 0.4673
2.7108 0.9 100000 2.7208 0.4679
2.7051 0.91 101000 2.7192 0.4681
2.7013 0.92 102000 2.7151 0.4687
2.6996 0.93 103000 2.7129 0.4689
2.6898 0.94 104000 2.7084 0.4694
2.688 0.95 105000 2.7053 0.4697
2.6855 0.96 106000 2.7018 0.4701
2.6852 0.97 107000 2.6989 0.4705
2.689 0.98 108000 2.6982 0.4705
2.6868 0.99 109000 2.6994 0.4707
2.6901 0.99 110000 2.7006 0.4707

Framework versions