generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

ner-fine-tune-roberta-more-data

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 120 0.2270 0.0 0.0 0.0 0.9541
No log 2.0 240 0.1783 0.1801 0.0684 0.0991 0.9582
No log 3.0 360 0.1810 0.1023 0.0637 0.0785 0.9519
No log 4.0 480 0.1642 0.2227 0.2358 0.2291 0.9518
0.2437 5.0 600 0.1728 0.1880 0.2429 0.2119 0.9401
0.2437 6.0 720 0.1997 0.1536 0.1934 0.1712 0.9344
0.2437 7.0 840 0.2637 0.1827 0.3231 0.2334 0.9237
0.2437 8.0 960 0.2564 0.1730 0.2476 0.2037 0.9320
0.0746 9.0 1080 0.2437 0.2116 0.3184 0.2542 0.9353
0.0746 10.0 1200 0.2524 0.2340 0.3443 0.2786 0.9347
0.0746 11.0 1320 0.2636 0.2071 0.2618 0.2312 0.9373
0.0746 12.0 1440 0.2562 0.2434 0.3255 0.2785 0.9389
0.0309 13.0 1560 0.2793 0.2263 0.3042 0.2596 0.9371
0.0309 14.0 1680 0.2441 0.3455 0.3137 0.3288 0.9586
0.0309 15.0 1800 0.3174 0.2123 0.3090 0.2517 0.9324
0.0309 16.0 1920 0.2784 0.2374 0.2877 0.2601 0.9393
0.0176 17.0 2040 0.2740 0.2758 0.3090 0.2914 0.9461
0.0176 18.0 2160 0.3077 0.2319 0.3467 0.2779 0.9344
0.0176 19.0 2280 0.3088 0.2380 0.3160 0.2715 0.9388
0.0176 20.0 2400 0.2848 0.2613 0.3278 0.2908 0.9414
0.0112 21.0 2520 0.2958 0.2453 0.3420 0.2857 0.9369
0.0112 22.0 2640 0.3089 0.2295 0.3632 0.2813 0.9331
0.0112 23.0 2760 0.3435 0.2359 0.375 0.2896 0.9330
0.0112 24.0 2880 0.3303 0.2434 0.3467 0.2860 0.9366
0.0076 25.0 3000 0.3237 0.2363 0.3160 0.2704 0.9383
0.0076 26.0 3120 0.3235 0.2451 0.3278 0.2805 0.9384
0.0076 27.0 3240 0.3409 0.2491 0.3302 0.2840 0.9361
0.0076 28.0 3360 0.3446 0.2416 0.3373 0.2815 0.9351
0.0076 29.0 3480 0.3470 0.2417 0.3278 0.2783 0.9355
0.0055 30.0 3600 0.3443 0.2432 0.3373 0.2826 0.9352

Framework versions