generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

experiment2

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Validation Loss Classification Report Confusion Matrix
0.076 1.0 174 0.95 0.9495 0.9583 0.95 0.1352 precision recall f1-score support
       0       1.00      0.80      0.89         5
       1       0.83      1.00      0.91         5
       2       1.00      1.00      1.00         5
       3       1.00      1.00      1.00         5
       4       1.00      1.00      1.00         5
       5       1.00      0.80      0.89         5
       6       0.83      1.00      0.91         5
       7       1.00      1.00      1.00         5

accuracy                           0.95        40

macro avg 0.96 0.95 0.95 40 weighted avg 0.96 0.95 0.95 40 | [[0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.2, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]] | | 0.0312 | 2.0 | 348 | 0.975 | 0.9747 | 0.9792 | 0.975 | 0.0697 | precision recall f1-score support

       0       1.00      1.00      1.00         5
       1       1.00      1.00      1.00         5
       2       1.00      1.00      1.00         5
       3       0.83      1.00      0.91         5
       4       1.00      1.00      1.00         5
       5       1.00      1.00      1.00         5
       6       1.00      0.80      0.89         5
       7       1.00      1.00      1.00         5

accuracy                           0.97        40

macro avg 0.98 0.97 0.97 40 weighted avg 0.98 0.97 0.97 40 | [[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.8, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]] | | 0.0031 | 3.0 | 522 | 0.975 | 0.9747 | 0.9792 | 0.975 | 0.0720 | precision recall f1-score support

       0       1.00      0.80      0.89         5
       1       1.00      1.00      1.00         5
       2       1.00      1.00      1.00         5
       3       1.00      1.00      1.00         5
       4       1.00      1.00      1.00         5
       5       1.00      1.00      1.00         5
       6       0.83      1.00      0.91         5
       7       1.00      1.00      1.00         5

accuracy                           0.97        40

macro avg 0.98 0.97 0.97 40 weighted avg 0.98 0.97 0.97 40 | [[0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]] |

Framework versions