generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

synpre_union_1M_t5-small

This model is a fine-tuned version of t5-small on the tyzhu/synpre_union_1M dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
9.2983 0.64 5000 9.1434 0.0329 56.9374
8.1313 1.28 10000 7.7232 0.4594 85.0875
3.4773 1.92 15000 2.1247 14.433 41.8774
1.7077 2.56 20000 1.2042 29.0873 46.2582
1.1895 3.2 25000 0.9203 42.2246 49.5123
0.9788 3.84 30000 0.7934 47.8307 50.2281
0.8514 4.48 35000 0.7216 52.7369 50.2908
0.7396 5.12 40000 0.6212 56.4669 50.4039
0.673 5.76 45000 0.5436 59.5425 50.409
0.588 6.4 50000 0.4722 59.8999 50.3889
0.522 7.04 55000 0.4068 63.3246 50.3016
0.4795 7.68 60000 0.3772 65.3541 50.4084
0.4334 8.32 65000 0.3388 68.2614 50.3323
0.3952 8.96 70000 0.2975 70.2889 50.4226
0.3498 9.6 75000 0.2634 73.9835 50.4118
0.315 10.24 80000 0.2791 63.3974 50.3034
0.2962 10.88 85000 0.2213 76.1748 50.4519
0.2661 11.52 90000 0.1985 78.6865 50.4598
0.2429 12.16 95000 0.1819 80.8658 50.4492
0.2273 12.8 100000 0.1850 77.0985 50.4322
0.2115 13.44 105000 0.1527 83.8686 50.4352
0.1926 14.08 110000 0.1412 83.8982 50.4047
0.1864 14.72 115000 0.1468 78.5222 50.3565
0.1673 15.36 120000 0.1233 86.3438 50.3884
0.161 16.0 125000 0.1262 83.0453 50.3824
0.1511 16.64 130000 0.1239 83.3592 50.4264
0.1432 17.28 135000 0.1097 87.7233 50.3878
0.1373 17.92 140000 0.1311 80.1804 50.3788
0.1283 18.56 145000 0.1070 86.6683 50.4169
0.1243 19.2 150000 0.1204 82.8423 50.3879
0.1259 19.84 155000 0.0989 88.3505 50.4013
0.1172 20.48 160000 0.1006 88.0823 50.4004
0.1096 21.12 165000 0.0962 89.2558 50.4177
0.1089 21.76 170000 0.0933 88.8995 50.3794
0.1028 22.4 175000 0.1138 83.1713 50.4083
0.0974 23.04 180000 0.0962 86.6705 50.3565
0.0991 23.68 185000 0.1007 85.517 50.408
0.0959 24.32 190000 0.0942 87.3596 50.409
0.0946 24.96 195000 0.0923 87.6022 50.4
0.0893 25.6 200000 0.0886 88.4534 50.3667

Framework versions