hf-asr-leaderboard generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

whisper-kor3_de_all

This model is a fine-tuned version of openai/whisper-small on the whisper-kor3_de_all dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2987 0.05 100 0.2906 19.7898 9.3285
0.2658 0.09 200 0.2795 19.3371 9.6942
0.2748 0.14 300 0.2774 19.4341 8.9980
0.279 0.18 400 0.2767 22.5061 10.6901
0.2634 0.23 500 0.2837 19.7736 8.9319
0.2816 0.28 600 0.2826 19.8868 9.2315
0.2698 0.32 700 0.2826 19.8222 8.9759
0.2728 0.37 800 0.2794 19.9030 8.9187
0.2951 0.42 900 0.2752 20.1778 9.2271
0.2853 0.46 1000 0.2754 19.6281 9.3637
0.264 0.51 1100 0.2769 19.8222 9.1434
0.2684 0.55 1200 0.2745 19.8545 9.1390
0.286 0.6 1300 0.2731 19.6766 8.9627
0.2636 0.65 1400 0.2725 19.3048 8.7512
0.262 0.69 1500 0.2690 19.6281 8.9848
0.262 0.74 1600 0.2698 19.9515 9.1610
0.2788 0.78 1700 0.2693 19.7251 9.2491
0.2606 0.83 1800 0.2636 18.7065 8.6807
0.2601 0.88 1900 0.2626 18.9329 8.9231
0.249 0.92 2000 0.2649 19.0137 8.7777
0.2594 0.97 2100 0.2598 18.0922 8.1519
0.1764 1.02 2200 0.2565 17.8658 8.1123
0.1603 1.06 2300 0.2556 18.3508 8.2401
0.1572 1.11 2400 0.2561 19.1269 9.3549
0.1536 1.15 2500 0.2564 18.1568 8.1872
0.1719 1.2 2600 0.2543 18.0598 8.2665
0.1543 1.25 2700 0.2557 17.9143 8.1431
0.1636 1.29 2800 0.2519 17.8173 8.0991
0.1672 1.34 2900 0.2507 18.3670 8.6851
0.1519 1.39 3000 0.2528 18.8844 8.8834
0.1582 1.43 3100 0.2502 17.9143 8.1387
0.164 1.48 3200 0.2507 18.1083 8.3238
0.1464 1.52 3300 0.2487 18.1407 8.2973
0.1492 1.57 3400 0.2473 18.0760 8.2929
0.149 1.62 3500 0.2467 17.9143 8.1343
0.1592 1.66 3600 0.2457 17.9628 8.2753
0.1533 1.71 3700 0.2449 17.8173 7.9933
0.1597 1.75 3800 0.2454 17.8011 8.1475
0.1293 1.8 3900 0.2448 17.6233 7.8655
0.1499 1.85 4000 0.2446 17.5909 7.8655

Framework versions