<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
results
This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0833
- Micro f1: 0.8343
- Macro f1: 0.7940
Model description
Labels = ['chatbot_post_api', 'confluence_create_page',
'confluence_get_content', 'confluence_get_search',
'create_image_api_create_image_post', 'hotdesk_get_available',
'hotdesk_get_reserve', 'hotdesk_get_search', 'hotdesk_post_cancel',
'hotdesk_post_reserve', 'jira_direct_api', 'jira_direct_get_api',
'meeting_master_get_meeting', 'meeting_master_get_my_meeting',
'meeting_master_get_room', 'meeting_master_get_user',
'meeting_master_post_meeting', 'mydataai',
'search_api_google_search_search_post']
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 |
---|---|---|---|---|---|
0.2581 | 1.0 | 217 | 0.1799 | 0.4690 | 0.1589 |
0.1565 | 2.0 | 434 | 0.1342 | 0.6834 | 0.3085 |
0.1166 | 3.0 | 651 | 0.1072 | 0.7267 | 0.3442 |
0.0942 | 4.0 | 868 | 0.0973 | 0.7073 | 0.3164 |
0.0809 | 5.0 | 1085 | 0.0827 | 0.7821 | 0.4383 |
0.0744 | 6.0 | 1302 | 0.0877 | 0.7809 | 0.4146 |
0.0606 | 7.0 | 1519 | 0.0784 | 0.7985 | 0.4510 |
0.0566 | 8.0 | 1736 | 0.0929 | 0.7726 | 0.4572 |
0.0539 | 9.0 | 1953 | 0.0899 | 0.7871 | 0.4522 |
0.0452 | 10.0 | 2170 | 0.0804 | 0.8044 | 0.5295 |
0.0406 | 11.0 | 2387 | 0.0822 | 0.8032 | 0.5213 |
0.0365 | 12.0 | 2604 | 0.0849 | 0.8060 | 0.6047 |
0.0334 | 13.0 | 2821 | 0.0780 | 0.8209 | 0.6309 |
0.0304 | 14.0 | 3038 | 0.0920 | 0.8039 | 0.6351 |
0.028 | 15.0 | 3255 | 0.0746 | 0.8319 | 0.6959 |
0.0243 | 16.0 | 3472 | 0.0741 | 0.8249 | 0.6261 |
0.0187 | 17.0 | 3689 | 0.0803 | 0.8339 | 0.7053 |
0.0157 | 18.0 | 3906 | 0.0809 | 0.8370 | 0.7643 |
0.0131 | 19.0 | 4123 | 0.0837 | 0.8244 | 0.7782 |
0.0139 | 20.0 | 4340 | 0.0833 | 0.8343 | 0.7940 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.2