generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Education Email Github Linkedin Location Name Name Phone Number Soft Skills Technical Skills Overall Precision Overall Recall Overall F1 Overall Accuracy
2.9387 1.0 2 2.8701 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.14285714285714285, 'recall': 0.5, 'f1': 0.22222222222222224, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} 0.0185 0.0333 0.0238 0.0328
2.6716 2.0 4 2.7798 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.10526315789473684, 'recall': 0.14285714285714285, 'f1': 0.12121212121212122, 'number': 14} 0.0612 0.1 0.0759 0.1311
2.5524 3.0 6 2.7407 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} {'precision': 0.2, 'recall': 0.35714285714285715, 'f1': 0.25641025641025644, 'number': 14} 0.1176 0.2 0.1481 0.1475

Framework versions