<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
wav2vec2-liepa-1-percent
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON_VOICE - LT dataset. It achieves the following results on the evaluation set:
- Loss: 0.5774
- Wer: 0.5079
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.23 | 100 | 3.3596 | 1.0 |
No log | 0.46 | 200 | 2.9280 | 1.0 |
No log | 0.69 | 300 | 1.5091 | 0.9650 |
No log | 0.93 | 400 | 0.9943 | 0.9177 |
3.1184 | 1.16 | 500 | 0.7590 | 0.7793 |
3.1184 | 1.39 | 600 | 0.7336 | 0.7408 |
3.1184 | 1.62 | 700 | 0.7040 | 0.7618 |
3.1184 | 1.85 | 800 | 0.6815 | 0.7233 |
3.1184 | 2.08 | 900 | 0.6457 | 0.6865 |
0.7917 | 2.31 | 1000 | 0.5705 | 0.6813 |
0.7917 | 2.55 | 1100 | 0.5708 | 0.6620 |
0.7917 | 2.78 | 1200 | 0.5888 | 0.6462 |
0.7917 | 3.01 | 1300 | 0.6509 | 0.6970 |
0.7917 | 3.24 | 1400 | 0.5871 | 0.6462 |
0.5909 | 3.47 | 1500 | 0.6199 | 0.6813 |
0.5909 | 3.7 | 1600 | 0.6230 | 0.5919 |
0.5909 | 3.94 | 1700 | 0.5721 | 0.6427 |
0.5909 | 4.17 | 1800 | 0.5331 | 0.5867 |
0.5909 | 4.4 | 1900 | 0.5561 | 0.6007 |
0.4607 | 4.63 | 2000 | 0.5414 | 0.5849 |
0.4607 | 4.86 | 2100 | 0.5390 | 0.5587 |
0.4607 | 5.09 | 2200 | 0.5313 | 0.5569 |
0.4607 | 5.32 | 2300 | 0.5893 | 0.5797 |
0.4607 | 5.56 | 2400 | 0.5507 | 0.5954 |
0.3933 | 5.79 | 2500 | 0.5521 | 0.6025 |
0.3933 | 6.02 | 2600 | 0.5663 | 0.5989 |
0.3933 | 6.25 | 2700 | 0.5636 | 0.5832 |
0.3933 | 6.48 | 2800 | 0.5464 | 0.5919 |
0.3933 | 6.71 | 2900 | 0.5623 | 0.5832 |
0.3367 | 6.94 | 3000 | 0.5324 | 0.5692 |
0.3367 | 7.18 | 3100 | 0.5907 | 0.5394 |
0.3367 | 7.41 | 3200 | 0.5653 | 0.5814 |
0.3367 | 7.64 | 3300 | 0.5707 | 0.5814 |
0.3367 | 7.87 | 3400 | 0.5754 | 0.5429 |
0.2856 | 8.1 | 3500 | 0.5953 | 0.5569 |
0.2856 | 8.33 | 3600 | 0.6275 | 0.5394 |
0.2856 | 8.56 | 3700 | 0.6253 | 0.5569 |
0.2856 | 8.8 | 3800 | 0.5930 | 0.5429 |
0.2856 | 9.03 | 3900 | 0.6082 | 0.5219 |
0.2522 | 9.26 | 4000 | 0.6026 | 0.5447 |
0.2522 | 9.49 | 4100 | 0.6052 | 0.5271 |
0.2522 | 9.72 | 4200 | 0.5871 | 0.5219 |
0.2522 | 9.95 | 4300 | 0.5870 | 0.5236 |
0.2522 | 10.19 | 4400 | 0.5881 | 0.5131 |
0.2167 | 10.42 | 4500 | 0.6122 | 0.5289 |
0.2167 | 10.65 | 4600 | 0.6128 | 0.5166 |
0.2167 | 10.88 | 4700 | 0.6135 | 0.5377 |
0.2167 | 11.11 | 4800 | 0.6055 | 0.5184 |
0.2167 | 11.34 | 4900 | 0.6725 | 0.5569 |
0.1965 | 11.57 | 5000 | 0.6482 | 0.5429 |
0.1965 | 11.81 | 5100 | 0.6037 | 0.5096 |
0.1965 | 12.04 | 5200 | 0.5931 | 0.5131 |
0.1965 | 12.27 | 5300 | 0.5853 | 0.5114 |
0.1965 | 12.5 | 5400 | 0.5798 | 0.5219 |
0.172 | 12.73 | 5500 | 0.5775 | 0.5009 |
0.172 | 12.96 | 5600 | 0.5782 | 0.5044 |
0.172 | 13.19 | 5700 | 0.5804 | 0.5184 |
0.172 | 13.43 | 5800 | 0.5977 | 0.5219 |
0.172 | 13.66 | 5900 | 0.6069 | 0.5236 |
0.1622 | 13.89 | 6000 | 0.5850 | 0.5131 |
0.1622 | 14.12 | 6100 | 0.5758 | 0.5096 |
0.1622 | 14.35 | 6200 | 0.5752 | 0.5009 |
0.1622 | 14.58 | 6300 | 0.5727 | 0.5184 |
0.1622 | 14.81 | 6400 | 0.5795 | 0.5044 |
Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.10.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1