ESPnet2 TTS model
imdanboy/kss_tts_train_jets_raw_phn_null_g2pk_train.total_count.ave
This model was trained by satoshi.2020 using kss recipe in espnet.
Demo: How to use in ESPnet2
cd espnet
git checkout 047d0c474c18a87c205e566948410be16787e477
pip install -e .
cd egs2/kss/tts1
./run.sh --skip_data_prep false --skip_train true --download_model imdanboy/kss_tts_train_jets_raw_phn_null_g2pk_train.total_count.ave
TTS config
<details><summary>expand</summary>
config: conf/tuning/train_jets.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/tts_train_jets_raw_phn_null_g2pk
ngpu: 1
seed: 777
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 52809
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 1000
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- text2mel_loss
- min
- - train
- text2mel_loss
- min
- - train
- total_count
- max
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: -1
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: 50
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 1000
batch_size: 20
valid_batch_size: null
batch_bins: 2000000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_raw_phn_null_g2pk/train/text_shape.phn
- exp/tts_stats_raw_phn_null_g2pk/train/speech_shape
valid_shape_file:
- exp/tts_stats_raw_phn_null_g2pk/valid/text_shape.phn
- exp/tts_stats_raw_phn_null_g2pk/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/tr_no_dev/text
- text
- text
- - dump/raw/tr_no_dev/wav.scp
- speech
- sound
- - exp/tts_stats_raw_phn_null_g2pk/train/collect_feats/pitch.scp
- pitch
- npy
- - exp/tts_stats_raw_phn_null_g2pk/train/collect_feats/energy.scp
- energy
- npy
valid_data_path_and_name_and_type:
- - dump/raw/dev/text
- text
- text
- - dump/raw/dev/wav.scp
- speech
- sound
- - exp/tts_stats_raw_phn_null_g2pk/valid/collect_feats/pitch.scp
- pitch
- npy
- - exp/tts_stats_raw_phn_null_g2pk/valid/collect_feats/energy.scp
- energy
- npy
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adamw
optim_conf:
lr: 0.0002
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
optim2: adamw
optim2_conf:
lr: 0.0002
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: true
token_list:
- <blank>
- <unk>
- ''
- ᅡ
- ᅵ
- ᄋ
- ᅳ
- ᄀ
- ᅥ
- ᄂ
- ᆫ
- ᄅ
- ᄌ
- ᄉ
- ᅩ
- ᆯ
- ᄆ
- .
- ᅮ
- ᄃ
- ᄒ
- ᅦ
- ᆼ
- ᅢ
- ᄇ
- ᅭ
- ᅧ
- ᄊ
- ᆷ
- ᄄ
- ᆮ
- ᄎ
- ᄁ
- ᆨ
- ᄑ
- ᄐ
- ᅪ
- ᄏ
- '?'
- ᄍ
- ᆸ
- ᅬ
- ᅣ
- ᅴ
- ᅯ
- ᅨ
- ᄈ
- ᅱ
- ᅲ
- ᅫ
- ','
- '!'
- ᅤ
- ':'
- ᅰ
- ''''
- '-'
- '"'
- /
- I
- M
- F
- E
- S
- C
- A
- B
- ㅇ
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: g2pk
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 24000
fmin: 0
fmax: null
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/tts_stats_raw_phn_null_g2pk/train/feats_stats.npz
tts: jets
tts_conf:
generator_type: jets_generator
generator_params:
adim: 256
aheads: 2
elayers: 4
eunits: 1024
dlayers: 4
dunits: 1024
positionwise_layer_type: conv1d
positionwise_conv_kernel_size: 3
duration_predictor_layers: 2
duration_predictor_chans: 256
duration_predictor_kernel_size: 3
use_masking: true
encoder_normalize_before: true
decoder_normalize_before: true
encoder_type: transformer
decoder_type: transformer
conformer_rel_pos_type: latest
conformer_pos_enc_layer_type: rel_pos
conformer_self_attn_layer_type: rel_selfattn
conformer_activation_type: swish
use_macaron_style_in_conformer: true
use_cnn_in_conformer: true
conformer_enc_kernel_size: 7
conformer_dec_kernel_size: 31
init_type: xavier_uniform
transformer_enc_dropout_rate: 0.2
transformer_enc_positional_dropout_rate: 0.2
transformer_enc_attn_dropout_rate: 0.2
transformer_dec_dropout_rate: 0.2
transformer_dec_positional_dropout_rate: 0.2
transformer_dec_attn_dropout_rate: 0.2
pitch_predictor_layers: 5
pitch_predictor_chans: 256
pitch_predictor_kernel_size: 5
pitch_predictor_dropout: 0.5
pitch_embed_kernel_size: 1
pitch_embed_dropout: 0.0
stop_gradient_from_pitch_predictor: true
energy_predictor_layers: 2
energy_predictor_chans: 256
energy_predictor_kernel_size: 3
energy_predictor_dropout: 0.5
energy_embed_kernel_size: 1
energy_embed_dropout: 0.0
stop_gradient_from_energy_predictor: false
generator_out_channels: 1
generator_channels: 512
generator_global_channels: -1
generator_kernel_size: 7
generator_upsample_scales:
- 8
- 8
- 2
- 2
generator_upsample_kernel_sizes:
- 16
- 16
- 4
- 4
generator_resblock_kernel_sizes:
- 3
- 7
- 11
generator_resblock_dilations:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
generator_use_additional_convs: true
generator_bias: true
generator_nonlinear_activation: LeakyReLU
generator_nonlinear_activation_params:
negative_slope: 0.1
generator_use_weight_norm: true
segment_size: 64
idim: 69
odim: 80
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: AvgPool1d
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 15
- 41
- 5
- 3
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: true
downsample_scales:
- 2
- 2
- 4
- 4
- 1
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
follow_official_norm: false
periods:
- 2
- 3
- 5
- 7
- 11
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 5
- 3
channels: 32
downsample_scales:
- 3
- 3
- 3
- 3
- 1
max_downsample_channels: 1024
bias: true
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
generator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
discriminator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
feat_match_loss_params:
average_by_discriminators: false
average_by_layers: false
include_final_outputs: true
mel_loss_params:
fs: 24000
n_fft: 1024
hop_length: 256
win_length: null
window: hann
n_mels: 80
fmin: 0
fmax: null
log_base: null
lambda_adv: 1.0
lambda_mel: 45.0
lambda_feat_match: 2.0
lambda_var: 1.0
lambda_align: 2.0
sampling_rate: 24000
cache_generator_outputs: true
pitch_extract: dio
pitch_extract_conf:
reduction_factor: 1
use_token_averaged_f0: false
fs: 24000
n_fft: 1024
hop_length: 256
f0max: 400
f0min: 80
pitch_normalize: global_mvn
pitch_normalize_conf:
stats_file: exp/tts_stats_raw_phn_null_g2pk/train/pitch_stats.npz
energy_extract: energy
energy_extract_conf:
reduction_factor: 1
use_token_averaged_energy: false
fs: 24000
n_fft: 1024
hop_length: 256
win_length: null
energy_normalize: global_mvn
energy_normalize_conf:
stats_file: exp/tts_stats_raw_phn_null_g2pk/train/energy_stats.npz
required:
- output_dir
- token_list
version: '202204'
distributed: true
</details>
Citing ESPnet
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}