<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
wav2vec2-large-multilang-cv-ru-night
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.6617
- Wer: 0.5097
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.725 | 1.58 | 500 | 3.2788 | 1.0 |
3.1184 | 3.15 | 1000 | 2.4018 | 1.0015 |
1.2393 | 4.73 | 1500 | 0.6213 | 0.7655 |
0.6899 | 6.31 | 2000 | 0.5518 | 0.6811 |
0.5532 | 7.89 | 2500 | 0.5102 | 0.6467 |
0.4604 | 9.46 | 3000 | 0.4887 | 0.6213 |
0.4095 | 11.04 | 3500 | 0.4874 | 0.6042 |
0.3565 | 12.62 | 4000 | 0.4810 | 0.5893 |
0.3238 | 14.2 | 4500 | 0.5028 | 0.5890 |
0.3011 | 15.77 | 5000 | 0.5475 | 0.5808 |
0.2827 | 17.35 | 5500 | 0.5289 | 0.5720 |
0.2659 | 18.93 | 6000 | 0.5496 | 0.5733 |
0.2445 | 20.5 | 6500 | 0.5354 | 0.5737 |
0.2366 | 22.08 | 7000 | 0.5357 | 0.5686 |
0.2181 | 23.66 | 7500 | 0.5491 | 0.5611 |
0.2146 | 25.24 | 8000 | 0.5591 | 0.5597 |
0.2006 | 26.81 | 8500 | 0.5625 | 0.5631 |
0.1912 | 28.39 | 9000 | 0.5577 | 0.5647 |
0.1821 | 29.97 | 9500 | 0.5684 | 0.5519 |
0.1744 | 31.55 | 10000 | 0.5639 | 0.5551 |
0.1691 | 33.12 | 10500 | 0.5596 | 0.5425 |
0.1577 | 34.7 | 11000 | 0.5770 | 0.5551 |
0.1522 | 36.28 | 11500 | 0.5634 | 0.5560 |
0.1468 | 37.85 | 12000 | 0.5815 | 0.5453 |
0.1508 | 39.43 | 12500 | 0.6053 | 0.5490 |
0.1394 | 41.01 | 13000 | 0.6193 | 0.5504 |
0.1291 | 42.59 | 13500 | 0.5930 | 0.5424 |
0.1345 | 44.16 | 14000 | 0.6283 | 0.5442 |
0.1296 | 45.74 | 14500 | 0.6063 | 0.5560 |
0.1286 | 47.32 | 15000 | 0.6248 | 0.5378 |
0.1231 | 48.9 | 15500 | 0.6106 | 0.5405 |
0.1189 | 50.47 | 16000 | 0.6164 | 0.5342 |
0.1127 | 52.05 | 16500 | 0.6269 | 0.5359 |
0.112 | 53.63 | 17000 | 0.6170 | 0.5390 |
0.1113 | 55.21 | 17500 | 0.6489 | 0.5385 |
0.1023 | 56.78 | 18000 | 0.6826 | 0.5490 |
0.1069 | 58.36 | 18500 | 0.6147 | 0.5296 |
0.1008 | 59.94 | 19000 | 0.6414 | 0.5332 |
0.1018 | 61.51 | 19500 | 0.6454 | 0.5288 |
0.0989 | 63.09 | 20000 | 0.6603 | 0.5303 |
0.0944 | 64.67 | 20500 | 0.6350 | 0.5288 |
0.0905 | 66.25 | 21000 | 0.6386 | 0.5247 |
0.0837 | 67.82 | 21500 | 0.6563 | 0.5298 |
0.0868 | 69.4 | 22000 | 0.6375 | 0.5208 |
0.0827 | 70.98 | 22500 | 0.6401 | 0.5271 |
0.0797 | 72.56 | 23000 | 0.6723 | 0.5191 |
0.0847 | 74.13 | 23500 | 0.6610 | 0.5213 |
0.0818 | 75.71 | 24000 | 0.6774 | 0.5254 |
0.0793 | 77.29 | 24500 | 0.6543 | 0.5250 |
0.0758 | 78.86 | 25000 | 0.6607 | 0.5218 |
0.0755 | 80.44 | 25500 | 0.6599 | 0.5160 |
0.0722 | 82.02 | 26000 | 0.6683 | 0.5196 |
0.0714 | 83.6 | 26500 | 0.6941 | 0.5180 |
0.0684 | 85.17 | 27000 | 0.6581 | 0.5167 |
0.0686 | 86.75 | 27500 | 0.6651 | 0.5172 |
0.0712 | 88.33 | 28000 | 0.6547 | 0.5208 |
0.0697 | 89.91 | 28500 | 0.6555 | 0.5162 |
0.0696 | 91.48 | 29000 | 0.6678 | 0.5107 |
0.0686 | 93.06 | 29500 | 0.6630 | 0.5124 |
0.0671 | 94.64 | 30000 | 0.6675 | 0.5143 |
0.0668 | 96.21 | 30500 | 0.6602 | 0.5107 |
0.0666 | 97.79 | 31000 | 0.6611 | 0.5097 |
0.0664 | 99.37 | 31500 | 0.6617 | 0.5097 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1