<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
MIX1_ja-en_helsinki
This model is a fine-tuned version of Helsinki-NLP/opus-mt-ja-en on a combination of Visual Novel, Light Novel, and Subtitle data. A total of ~10MM lines of training data were used. It achieves the following results on the evaluation set:
- Loss: 1.7947
- Otaku Benchmark VN BLEU: 17.78
- Otaku Benchmark LN BLEU: 11.80
- Otaku Benchmark MANGA BLEU: 13.66
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7495 | 0.01 | 2000 | 2.5989 |
2.5415 | 0.03 | 4000 | 2.4746 |
2.4409 | 0.04 | 6000 | 2.4731 |
2.3743 | 0.05 | 8000 | 2.4012 |
2.3254 | 0.06 | 10000 | 2.3904 |
2.2857 | 0.08 | 12000 | 2.3649 |
2.2448 | 0.09 | 14000 | 2.3188 |
2.2158 | 0.1 | 16000 | 2.2975 |
2.193 | 0.11 | 18000 | 2.2756 |
2.1669 | 0.13 | 20000 | 2.2852 |
2.144 | 0.14 | 22000 | 2.2689 |
2.1222 | 0.15 | 24000 | 2.2721 |
2.1045 | 0.16 | 26000 | 2.2489 |
2.0885 | 0.18 | 28000 | 2.2359 |
2.0732 | 0.19 | 30000 | 2.2771 |
2.0584 | 0.2 | 32000 | 2.2582 |
2.0471 | 0.21 | 34000 | 2.2093 |
2.0369 | 0.23 | 36000 | 2.1768 |
2.0241 | 0.24 | 38000 | 2.1884 |
2.0196 | 0.25 | 40000 | 2.2025 |
2.004 | 0.27 | 42000 | 2.1507 |
1.9936 | 0.28 | 44000 | 2.1668 |
1.9869 | 0.29 | 46000 | 2.1432 |
1.9735 | 0.3 | 48000 | 2.1662 |
1.9651 | 0.32 | 50000 | 2.1824 |
1.9551 | 0.33 | 52000 | 2.1608 |
1.9485 | 0.34 | 54000 | 2.1322 |
1.9421 | 0.35 | 56000 | 2.1476 |
1.9303 | 0.37 | 58000 | 2.0994 |
1.9236 | 0.38 | 60000 | 2.1182 |
1.9183 | 0.39 | 62000 | 2.1305 |
1.9108 | 0.4 | 64000 | 2.1469 |
1.9051 | 0.42 | 66000 | 2.1414 |
1.9018 | 0.43 | 68000 | 2.1089 |
1.8959 | 0.44 | 70000 | 2.0908 |
1.886 | 0.46 | 72000 | 2.0968 |
1.8802 | 0.47 | 74000 | 2.0503 |
1.8713 | 0.48 | 76000 | 2.0542 |
1.8648 | 0.49 | 78000 | 2.0990 |
1.8599 | 0.51 | 80000 | 2.1112 |
1.8563 | 0.52 | 82000 | 2.1007 |
1.8541 | 0.53 | 84000 | 2.0849 |
1.845 | 0.54 | 86000 | 2.0831 |
1.8448 | 0.56 | 88000 | 2.0560 |
1.8342 | 0.57 | 90000 | 2.0349 |
1.8344 | 0.58 | 92000 | 2.0301 |
1.8291 | 0.59 | 94000 | 2.0300 |
1.819 | 0.61 | 96000 | 2.0378 |
1.8154 | 0.62 | 98000 | 2.0197 |
1.82 | 0.63 | 100000 | 2.0463 |
1.8081 | 0.64 | 102000 | 2.0077 |
1.8046 | 0.66 | 104000 | 2.0101 |
1.7978 | 0.67 | 106000 | 2.0150 |
1.7934 | 0.68 | 108000 | 2.0215 |
1.7904 | 0.7 | 110000 | 2.0278 |
1.7871 | 0.71 | 112000 | 2.0588 |
1.779 | 0.72 | 114000 | 2.0062 |
1.7784 | 0.73 | 116000 | 2.0300 |
1.7749 | 0.75 | 118000 | 1.9664 |
1.7691 | 0.76 | 120000 | 2.0033 |
1.7622 | 0.77 | 122000 | 1.9983 |
1.7587 | 0.78 | 124000 | 2.0030 |
1.755 | 0.8 | 126000 | 1.9955 |
1.7531 | 0.81 | 128000 | 1.9764 |
1.7439 | 0.82 | 130000 | 1.9942 |
1.7406 | 0.83 | 132000 | 2.0221 |
1.7385 | 0.85 | 134000 | 1.9835 |
1.7332 | 0.86 | 136000 | 1.9967 |
1.7332 | 0.87 | 138000 | 2.0247 |
1.7309 | 0.88 | 140000 | 1.9817 |
1.7248 | 0.9 | 142000 | 2.0063 |
1.7209 | 0.91 | 144000 | 1.9583 |
1.7154 | 0.92 | 146000 | 1.9779 |
1.7153 | 0.94 | 148000 | 1.9478 |
1.7094 | 0.95 | 150000 | 1.9706 |
1.7061 | 0.96 | 152000 | 1.9605 |
1.7017 | 0.97 | 154000 | 1.9447 |
1.6965 | 0.99 | 156000 | 1.9419 |
1.6929 | 1.0 | 158000 | 1.9589 |
1.6628 | 1.01 | 160000 | 1.9383 |
1.6535 | 1.02 | 162000 | 1.9487 |
1.6495 | 1.04 | 164000 | 1.9400 |
1.6516 | 1.05 | 166000 | 1.9353 |
1.6513 | 1.06 | 168000 | 1.9253 |
1.6518 | 1.07 | 170000 | 1.9132 |
1.6491 | 1.09 | 172000 | 1.9076 |
1.6453 | 1.1 | 174000 | 1.9192 |
1.6426 | 1.11 | 176000 | 1.9191 |
1.6353 | 1.13 | 178000 | 1.9367 |
1.6352 | 1.14 | 180000 | 1.9218 |
1.6304 | 1.15 | 182000 | 1.9305 |
1.6299 | 1.16 | 184000 | 1.9072 |
1.6263 | 1.18 | 186000 | 1.9211 |
1.6284 | 1.19 | 188000 | 1.9037 |
1.6237 | 1.2 | 190000 | 1.8951 |
1.6231 | 1.21 | 192000 | 1.8998 |
1.6184 | 1.23 | 194000 | 1.8960 |
1.6153 | 1.24 | 196000 | 1.8776 |
1.6122 | 1.25 | 198000 | 1.8747 |
1.6109 | 1.26 | 200000 | 1.8951 |
1.6072 | 1.28 | 202000 | 1.8705 |
1.6094 | 1.29 | 204000 | 1.8903 |
1.6063 | 1.3 | 206000 | 1.8660 |
1.599 | 1.31 | 208000 | 1.8696 |
1.5931 | 1.33 | 210000 | 1.8598 |
1.5943 | 1.34 | 212000 | 1.8760 |
1.5906 | 1.35 | 214000 | 1.8833 |
1.5858 | 1.37 | 216000 | 1.8645 |
1.5873 | 1.38 | 218000 | 1.8620 |
1.5842 | 1.39 | 220000 | 1.8632 |
1.5808 | 1.4 | 222000 | 1.8782 |
1.5756 | 1.42 | 224000 | 1.8627 |
1.5728 | 1.43 | 226000 | 1.8649 |
1.5709 | 1.44 | 228000 | 1.8735 |
1.5704 | 1.45 | 230000 | 1.8630 |
1.5659 | 1.47 | 232000 | 1.8598 |
1.5637 | 1.48 | 234000 | 1.8519 |
1.5628 | 1.49 | 236000 | 1.8569 |
1.5559 | 1.5 | 238000 | 1.8401 |
1.5532 | 1.52 | 240000 | 1.8528 |
1.557 | 1.53 | 242000 | 1.8637 |
1.5499 | 1.54 | 244000 | 1.8701 |
1.5476 | 1.55 | 246000 | 1.8423 |
1.5502 | 1.57 | 248000 | 1.8320 |
1.5469 | 1.58 | 250000 | 1.8542 |
1.5382 | 1.59 | 252000 | 1.8526 |
1.5396 | 1.61 | 254000 | 1.8537 |
1.528 | 1.62 | 256000 | 1.8248 |
1.532 | 1.63 | 258000 | 1.8322 |
1.5269 | 1.64 | 260000 | 1.8381 |
1.5269 | 1.66 | 262000 | 1.8389 |
1.5269 | 1.67 | 264000 | 1.8445 |
1.525 | 1.68 | 266000 | 1.8232 |
1.5175 | 1.69 | 268000 | 1.8561 |
1.5172 | 1.71 | 270000 | 1.8342 |
1.5174 | 1.72 | 272000 | 1.8167 |
1.5114 | 1.73 | 274000 | 1.8281 |
1.5094 | 1.74 | 276000 | 1.8164 |
1.5083 | 1.76 | 278000 | 1.8317 |
1.5047 | 1.77 | 280000 | 1.8207 |
1.5045 | 1.78 | 282000 | 1.8155 |
1.497 | 1.8 | 284000 | 1.8275 |
1.4996 | 1.81 | 286000 | 1.8152 |
1.497 | 1.82 | 288000 | 1.8137 |
1.4967 | 1.83 | 290000 | 1.8109 |
1.4936 | 1.85 | 292000 | 1.8037 |
1.4867 | 1.86 | 294000 | 1.7955 |
1.4859 | 1.87 | 296000 | 1.8181 |
1.4869 | 1.88 | 298000 | 1.7999 |
1.4811 | 1.9 | 300000 | 1.8062 |
1.4831 | 1.91 | 302000 | 1.8042 |
1.4791 | 1.92 | 304000 | 1.8020 |
1.4797 | 1.93 | 306000 | 1.7972 |
1.483 | 1.95 | 308000 | 1.8044 |
1.4748 | 1.96 | 310000 | 1.8036 |
1.4772 | 1.97 | 312000 | 1.7958 |
1.4708 | 1.98 | 314000 | 1.7967 |
1.4743 | 2.0 | 316000 | 1.7947 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1