question generation

Model Card of lmqg/mt5-small-frquad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_frquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-small-frquad-qg")

# model prediction
questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")

from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-frquad-qg")
output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")

Evaluation

Score Type Dataset
BERTScore 80.71 default lmqg/qg_frquad
Bleu_1 29.26 default lmqg/qg_frquad
Bleu_2 17.56 default lmqg/qg_frquad
Bleu_3 12.03 default lmqg/qg_frquad
Bleu_4 8.55 default lmqg/qg_frquad
METEOR 17.51 default lmqg/qg_frquad
MoverScore 56.5 default lmqg/qg_frquad
ROUGE_L 28.56 default lmqg/qg_frquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 88.52 default lmqg/qg_frquad
QAAlignedF1Score (MoverScore) 62.46 default lmqg/qg_frquad
QAAlignedPrecision (BERTScore) 88.53 default lmqg/qg_frquad
QAAlignedPrecision (MoverScore) 62.46 default lmqg/qg_frquad
QAAlignedRecall (BERTScore) 88.51 default lmqg/qg_frquad
QAAlignedRecall (MoverScore) 62.45 default lmqg/qg_frquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 79.72 default lmqg/qg_frquad
QAAlignedF1Score (MoverScore) 53.94 default lmqg/qg_frquad
QAAlignedPrecision (BERTScore) 77.58 default lmqg/qg_frquad
QAAlignedPrecision (MoverScore) 52.7 default lmqg/qg_frquad
QAAlignedRecall (BERTScore) 82.06 default lmqg/qg_frquad
QAAlignedRecall (MoverScore) 55.32 default lmqg/qg_frquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}