<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
exper_batch_8_e8
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4608
- Accuracy: 0.9052
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Apex, opt level O1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.2202 | 0.08 | 100 | 4.1245 | 0.1237 |
3.467 | 0.16 | 200 | 3.5622 | 0.2143 |
3.3469 | 0.23 | 300 | 3.1688 | 0.2675 |
2.8086 | 0.31 | 400 | 2.8965 | 0.3034 |
2.6291 | 0.39 | 500 | 2.5858 | 0.4025 |
2.2382 | 0.47 | 600 | 2.2908 | 0.4133 |
1.9259 | 0.55 | 700 | 2.2007 | 0.4676 |
1.8088 | 0.63 | 800 | 2.0419 | 0.4742 |
1.9462 | 0.7 | 900 | 1.6793 | 0.5578 |
1.5392 | 0.78 | 1000 | 1.5460 | 0.6079 |
1.561 | 0.86 | 1100 | 1.5793 | 0.5690 |
1.2135 | 0.94 | 1200 | 1.4663 | 0.5929 |
1.0725 | 1.02 | 1300 | 1.2974 | 0.6534 |
0.8696 | 1.1 | 1400 | 1.2406 | 0.6569 |
0.8758 | 1.17 | 1500 | 1.2127 | 0.6623 |
1.1737 | 1.25 | 1600 | 1.2243 | 0.6550 |
0.8242 | 1.33 | 1700 | 1.1371 | 0.6735 |
1.0141 | 1.41 | 1800 | 1.0536 | 0.7024 |
0.9855 | 1.49 | 1900 | 0.9885 | 0.7205 |
0.805 | 1.57 | 2000 | 0.9048 | 0.7479 |
0.7207 | 1.64 | 2100 | 0.8842 | 0.7490 |
0.7101 | 1.72 | 2200 | 0.8954 | 0.7436 |
0.5946 | 1.8 | 2300 | 0.9174 | 0.7386 |
0.6937 | 1.88 | 2400 | 0.7818 | 0.7760 |
0.5593 | 1.96 | 2500 | 0.7449 | 0.7934 |
0.4139 | 2.04 | 2600 | 0.7787 | 0.7830 |
0.2929 | 2.11 | 2700 | 0.7122 | 0.7945 |
0.4159 | 2.19 | 2800 | 0.7446 | 0.7907 |
0.4079 | 2.27 | 2900 | 0.7354 | 0.7938 |
0.516 | 2.35 | 3000 | 0.7499 | 0.8007 |
0.2728 | 2.43 | 3100 | 0.6851 | 0.8061 |
0.4159 | 2.51 | 3200 | 0.7258 | 0.7999 |
0.3396 | 2.58 | 3300 | 0.7455 | 0.7972 |
0.1918 | 2.66 | 3400 | 0.6793 | 0.8119 |
0.1228 | 2.74 | 3500 | 0.6696 | 0.8134 |
0.2671 | 2.82 | 3600 | 0.6306 | 0.8285 |
0.4986 | 2.9 | 3700 | 0.6111 | 0.8296 |
0.3699 | 2.98 | 3800 | 0.5600 | 0.8508 |
0.0444 | 3.05 | 3900 | 0.6021 | 0.8331 |
0.1489 | 3.13 | 4000 | 0.5599 | 0.8516 |
0.15 | 3.21 | 4100 | 0.6377 | 0.8365 |
0.2535 | 3.29 | 4200 | 0.5752 | 0.8543 |
0.2679 | 3.37 | 4300 | 0.5677 | 0.8608 |
0.0989 | 3.45 | 4400 | 0.6325 | 0.8396 |
0.0825 | 3.52 | 4500 | 0.5979 | 0.8524 |
0.0427 | 3.6 | 4600 | 0.5903 | 0.8516 |
0.1806 | 3.68 | 4700 | 0.5323 | 0.8628 |
0.2672 | 3.76 | 4800 | 0.5688 | 0.8604 |
0.2674 | 3.84 | 4900 | 0.5369 | 0.8635 |
0.2185 | 3.92 | 5000 | 0.4743 | 0.8820 |
0.2195 | 3.99 | 5100 | 0.5340 | 0.8709 |
0.0049 | 4.07 | 5200 | 0.5883 | 0.8608 |
0.0204 | 4.15 | 5300 | 0.6102 | 0.8539 |
0.0652 | 4.23 | 5400 | 0.5659 | 0.8670 |
0.028 | 4.31 | 5500 | 0.4916 | 0.8840 |
0.0423 | 4.39 | 5600 | 0.5706 | 0.8736 |
0.0087 | 4.46 | 5700 | 0.5653 | 0.8697 |
0.0964 | 4.54 | 5800 | 0.5423 | 0.8755 |
0.0841 | 4.62 | 5900 | 0.5160 | 0.8743 |
0.0945 | 4.7 | 6000 | 0.5532 | 0.8697 |
0.0311 | 4.78 | 6100 | 0.4947 | 0.8867 |
0.0423 | 4.86 | 6200 | 0.5063 | 0.8843 |
0.1348 | 4.93 | 6300 | 0.5619 | 0.8743 |
0.049 | 5.01 | 6400 | 0.5800 | 0.8732 |
0.0053 | 5.09 | 6500 | 0.5499 | 0.8770 |
0.0234 | 5.17 | 6600 | 0.5102 | 0.8874 |
0.0192 | 5.25 | 6700 | 0.5447 | 0.8836 |
0.0029 | 5.32 | 6800 | 0.4787 | 0.8936 |
0.0249 | 5.4 | 6900 | 0.5232 | 0.8870 |
0.0671 | 5.48 | 7000 | 0.4766 | 0.8975 |
0.0056 | 5.56 | 7100 | 0.5136 | 0.8894 |
0.003 | 5.64 | 7200 | 0.5085 | 0.8882 |
0.0015 | 5.72 | 7300 | 0.4832 | 0.8971 |
0.0014 | 5.79 | 7400 | 0.4648 | 0.8998 |
0.0065 | 5.87 | 7500 | 0.4739 | 0.8978 |
0.0011 | 5.95 | 7600 | 0.5349 | 0.8867 |
0.0021 | 6.03 | 7700 | 0.5460 | 0.8847 |
0.0012 | 6.11 | 7800 | 0.5309 | 0.8890 |
0.0011 | 6.19 | 7900 | 0.4852 | 0.8998 |
0.0093 | 6.26 | 8000 | 0.4751 | 0.8998 |
0.003 | 6.34 | 8100 | 0.4934 | 0.8963 |
0.0027 | 6.42 | 8200 | 0.4882 | 0.9029 |
0.0009 | 6.5 | 8300 | 0.4806 | 0.9021 |
0.0009 | 6.58 | 8400 | 0.4974 | 0.9029 |
0.0009 | 6.66 | 8500 | 0.4748 | 0.9075 |
0.0008 | 6.73 | 8600 | 0.4723 | 0.9094 |
0.001 | 6.81 | 8700 | 0.4692 | 0.9098 |
0.0007 | 6.89 | 8800 | 0.4726 | 0.9075 |
0.0011 | 6.97 | 8900 | 0.4686 | 0.9067 |
0.0006 | 7.05 | 9000 | 0.4653 | 0.9056 |
0.0006 | 7.13 | 9100 | 0.4755 | 0.9029 |
0.0007 | 7.2 | 9200 | 0.4633 | 0.9036 |
0.0067 | 7.28 | 9300 | 0.4611 | 0.9036 |
0.0007 | 7.36 | 9400 | 0.4608 | 0.9052 |
0.0007 | 7.44 | 9500 | 0.4623 | 0.9044 |
0.0005 | 7.52 | 9600 | 0.4621 | 0.9056 |
0.0005 | 7.6 | 9700 | 0.4615 | 0.9056 |
0.0005 | 7.67 | 9800 | 0.4612 | 0.9059 |
0.0005 | 7.75 | 9900 | 0.4626 | 0.9075 |
0.0004 | 7.83 | 10000 | 0.4626 | 0.9075 |
0.0005 | 7.91 | 10100 | 0.4626 | 0.9075 |
0.0006 | 7.99 | 10200 | 0.4626 | 0.9079 |
Framework versions
- Transformers 4.19.4
- Pytorch 1.5.1
- Datasets 2.3.2
- Tokenizers 0.12.1