image-classification generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

exper_batch_8_e8

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.2202 0.08 100 4.1245 0.1237
3.467 0.16 200 3.5622 0.2143
3.3469 0.23 300 3.1688 0.2675
2.8086 0.31 400 2.8965 0.3034
2.6291 0.39 500 2.5858 0.4025
2.2382 0.47 600 2.2908 0.4133
1.9259 0.55 700 2.2007 0.4676
1.8088 0.63 800 2.0419 0.4742
1.9462 0.7 900 1.6793 0.5578
1.5392 0.78 1000 1.5460 0.6079
1.561 0.86 1100 1.5793 0.5690
1.2135 0.94 1200 1.4663 0.5929
1.0725 1.02 1300 1.2974 0.6534
0.8696 1.1 1400 1.2406 0.6569
0.8758 1.17 1500 1.2127 0.6623
1.1737 1.25 1600 1.2243 0.6550
0.8242 1.33 1700 1.1371 0.6735
1.0141 1.41 1800 1.0536 0.7024
0.9855 1.49 1900 0.9885 0.7205
0.805 1.57 2000 0.9048 0.7479
0.7207 1.64 2100 0.8842 0.7490
0.7101 1.72 2200 0.8954 0.7436
0.5946 1.8 2300 0.9174 0.7386
0.6937 1.88 2400 0.7818 0.7760
0.5593 1.96 2500 0.7449 0.7934
0.4139 2.04 2600 0.7787 0.7830
0.2929 2.11 2700 0.7122 0.7945
0.4159 2.19 2800 0.7446 0.7907
0.4079 2.27 2900 0.7354 0.7938
0.516 2.35 3000 0.7499 0.8007
0.2728 2.43 3100 0.6851 0.8061
0.4159 2.51 3200 0.7258 0.7999
0.3396 2.58 3300 0.7455 0.7972
0.1918 2.66 3400 0.6793 0.8119
0.1228 2.74 3500 0.6696 0.8134
0.2671 2.82 3600 0.6306 0.8285
0.4986 2.9 3700 0.6111 0.8296
0.3699 2.98 3800 0.5600 0.8508
0.0444 3.05 3900 0.6021 0.8331
0.1489 3.13 4000 0.5599 0.8516
0.15 3.21 4100 0.6377 0.8365
0.2535 3.29 4200 0.5752 0.8543
0.2679 3.37 4300 0.5677 0.8608
0.0989 3.45 4400 0.6325 0.8396
0.0825 3.52 4500 0.5979 0.8524
0.0427 3.6 4600 0.5903 0.8516
0.1806 3.68 4700 0.5323 0.8628
0.2672 3.76 4800 0.5688 0.8604
0.2674 3.84 4900 0.5369 0.8635
0.2185 3.92 5000 0.4743 0.8820
0.2195 3.99 5100 0.5340 0.8709
0.0049 4.07 5200 0.5883 0.8608
0.0204 4.15 5300 0.6102 0.8539
0.0652 4.23 5400 0.5659 0.8670
0.028 4.31 5500 0.4916 0.8840
0.0423 4.39 5600 0.5706 0.8736
0.0087 4.46 5700 0.5653 0.8697
0.0964 4.54 5800 0.5423 0.8755
0.0841 4.62 5900 0.5160 0.8743
0.0945 4.7 6000 0.5532 0.8697
0.0311 4.78 6100 0.4947 0.8867
0.0423 4.86 6200 0.5063 0.8843
0.1348 4.93 6300 0.5619 0.8743
0.049 5.01 6400 0.5800 0.8732
0.0053 5.09 6500 0.5499 0.8770
0.0234 5.17 6600 0.5102 0.8874
0.0192 5.25 6700 0.5447 0.8836
0.0029 5.32 6800 0.4787 0.8936
0.0249 5.4 6900 0.5232 0.8870
0.0671 5.48 7000 0.4766 0.8975
0.0056 5.56 7100 0.5136 0.8894
0.003 5.64 7200 0.5085 0.8882
0.0015 5.72 7300 0.4832 0.8971
0.0014 5.79 7400 0.4648 0.8998
0.0065 5.87 7500 0.4739 0.8978
0.0011 5.95 7600 0.5349 0.8867
0.0021 6.03 7700 0.5460 0.8847
0.0012 6.11 7800 0.5309 0.8890
0.0011 6.19 7900 0.4852 0.8998
0.0093 6.26 8000 0.4751 0.8998
0.003 6.34 8100 0.4934 0.8963
0.0027 6.42 8200 0.4882 0.9029
0.0009 6.5 8300 0.4806 0.9021
0.0009 6.58 8400 0.4974 0.9029
0.0009 6.66 8500 0.4748 0.9075
0.0008 6.73 8600 0.4723 0.9094
0.001 6.81 8700 0.4692 0.9098
0.0007 6.89 8800 0.4726 0.9075
0.0011 6.97 8900 0.4686 0.9067
0.0006 7.05 9000 0.4653 0.9056
0.0006 7.13 9100 0.4755 0.9029
0.0007 7.2 9200 0.4633 0.9036
0.0067 7.28 9300 0.4611 0.9036
0.0007 7.36 9400 0.4608 0.9052
0.0007 7.44 9500 0.4623 0.9044
0.0005 7.52 9600 0.4621 0.9056
0.0005 7.6 9700 0.4615 0.9056
0.0005 7.67 9800 0.4612 0.9059
0.0005 7.75 9900 0.4626 0.9075
0.0004 7.83 10000 0.4626 0.9075
0.0005 7.91 10100 0.4626 0.9075
0.0006 7.99 10200 0.4626 0.9079

Framework versions