question generation

Model Card of lmqg/mbart-large-cc25-dequad-qg

This model is fine-tuned version of facebook/mbart-large-cc25 for question generation task on the lmqg/qg_dequad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="de", model="lmqg/mbart-large-cc25-dequad-qg")

# model prediction
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")

from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-dequad-qg")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")

Evaluation

Score Type Dataset
BERTScore 80.77 default lmqg/qg_dequad
Bleu_1 10.96 default lmqg/qg_dequad
Bleu_2 4.48 default lmqg/qg_dequad
Bleu_3 1.91 default lmqg/qg_dequad
Bleu_4 0.75 default lmqg/qg_dequad
METEOR 13.71 default lmqg/qg_dequad
MoverScore 55.88 default lmqg/qg_dequad
ROUGE_L 11.19 default lmqg/qg_dequad
Score Type Dataset
QAAlignedF1Score (BERTScore) 90.66 default lmqg/qg_dequad
QAAlignedF1Score (MoverScore) 65.36 default lmqg/qg_dequad
QAAlignedPrecision (BERTScore) 90.64 default lmqg/qg_dequad
QAAlignedPrecision (MoverScore) 65.37 default lmqg/qg_dequad
QAAlignedRecall (BERTScore) 90.69 default lmqg/qg_dequad
QAAlignedRecall (MoverScore) 65.36 default lmqg/qg_dequad
Score Type Dataset
QAAlignedF1Score (BERTScore) 0 default lmqg/qg_dequad
QAAlignedF1Score (MoverScore) 0 default lmqg/qg_dequad
QAAlignedPrecision (BERTScore) 0 default lmqg/qg_dequad
QAAlignedPrecision (MoverScore) 0 default lmqg/qg_dequad
QAAlignedRecall (BERTScore) 0 default lmqg/qg_dequad
QAAlignedRecall (MoverScore) 0 default lmqg/qg_dequad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}