<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
hsohn3/mayo-bert-visit-uncased-wordlevel-block512-batch4-ep100
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.9559
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
| Train Loss | Epoch |
|---|---|
| 4.1247 | 0 |
| 3.5129 | 1 |
| 3.4726 | 2 |
| 3.4483 | 3 |
| 3.4395 | 4 |
| 3.4301 | 5 |
| 3.4260 | 6 |
| 3.4131 | 7 |
| 3.3831 | 8 |
| 3.2925 | 9 |
| 3.2454 | 10 |
| 3.2092 | 11 |
| 3.1695 | 12 |
| 3.1346 | 13 |
| 3.0797 | 14 |
| 3.0154 | 15 |
| 2.9557 | 16 |
| 2.8814 | 17 |
| 2.7720 | 18 |
| 2.5472 | 19 |
| 2.3193 | 20 |
| 2.1005 | 21 |
| 1.9331 | 22 |
| 1.7971 | 23 |
| 1.6859 | 24 |
| 1.6062 | 25 |
| 1.5310 | 26 |
| 1.4706 | 27 |
| 1.4203 | 28 |
| 1.3681 | 29 |
| 1.3222 | 30 |
| 1.2939 | 31 |
| 1.2726 | 32 |
| 1.2494 | 33 |
| 1.2330 | 34 |
| 1.2161 | 35 |
| 1.1998 | 36 |
| 1.1874 | 37 |
| 1.1767 | 38 |
| 1.1641 | 39 |
| 1.1550 | 40 |
| 1.1407 | 41 |
| 1.1363 | 42 |
| 1.1272 | 43 |
| 1.1227 | 44 |
| 1.1163 | 45 |
| 1.1065 | 46 |
| 1.1008 | 47 |
| 1.0957 | 48 |
| 1.0837 | 49 |
| 1.0844 | 50 |
| 1.0778 | 51 |
| 1.0741 | 52 |
| 1.0693 | 53 |
| 1.0662 | 54 |
| 1.0608 | 55 |
| 1.0521 | 56 |
| 1.0526 | 57 |
| 1.0476 | 58 |
| 1.0454 | 59 |
| 1.0452 | 60 |
| 1.0348 | 61 |
| 1.0333 | 62 |
| 1.0342 | 63 |
| 1.0293 | 64 |
| 1.0249 | 65 |
| 1.0241 | 66 |
| 1.0194 | 67 |
| 1.0177 | 68 |
| 1.0102 | 69 |
| 1.0055 | 70 |
| 1.0052 | 71 |
| 1.0038 | 72 |
| 1.0005 | 73 |
| 0.9981 | 74 |
| 0.9991 | 75 |
| 0.9950 | 76 |
| 0.9928 | 77 |
| 0.9898 | 78 |
| 0.9906 | 79 |
| 0.9873 | 80 |
| 0.9849 | 81 |
| 0.9808 | 82 |
| 0.9804 | 83 |
| 0.9792 | 84 |
| 0.9789 | 85 |
| 0.9797 | 86 |
| 0.9741 | 87 |
| 0.9781 | 88 |
| 0.9678 | 89 |
| 0.9686 | 90 |
| 0.9651 | 91 |
| 0.9652 | 92 |
| 0.9613 | 93 |
| 0.9599 | 94 |
| 0.9566 | 95 |
| 0.9571 | 96 |
| 0.9577 | 97 |
| 0.9536 | 98 |
| 0.9559 | 99 |
Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1