<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
hsohn3/mayo-timebert-visit-uncased-wordlevel-block512-batch4-ep100
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.8536
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
| Train Loss | Epoch |
|---|---|
| 3.9508 | 0 |
| 3.4063 | 1 |
| 3.3682 | 2 |
| 3.3468 | 3 |
| 3.3330 | 4 |
| 3.3308 | 5 |
| 3.3225 | 6 |
| 3.3106 | 7 |
| 3.2518 | 8 |
| 3.1859 | 9 |
| 3.1373 | 10 |
| 3.0923 | 11 |
| 3.0390 | 12 |
| 2.9560 | 13 |
| 2.8605 | 14 |
| 2.7564 | 15 |
| 2.4969 | 16 |
| 2.2044 | 17 |
| 1.9566 | 18 |
| 1.7686 | 19 |
| 1.5995 | 20 |
| 1.4932 | 21 |
| 1.4100 | 22 |
| 1.3538 | 23 |
| 1.2973 | 24 |
| 1.2610 | 25 |
| 1.2160 | 26 |
| 1.1916 | 27 |
| 1.1607 | 28 |
| 1.1468 | 29 |
| 1.1262 | 30 |
| 1.1123 | 31 |
| 1.0942 | 32 |
| 1.0816 | 33 |
| 1.0717 | 34 |
| 1.0575 | 35 |
| 1.0503 | 36 |
| 1.0411 | 37 |
| 1.0293 | 38 |
| 1.0229 | 39 |
| 1.0139 | 40 |
| 1.0081 | 41 |
| 1.0028 | 42 |
| 0.9967 | 43 |
| 0.9906 | 44 |
| 0.9834 | 45 |
| 0.9782 | 46 |
| 0.9766 | 47 |
| 0.9676 | 48 |
| 0.9618 | 49 |
| 0.9611 | 50 |
| 0.9553 | 51 |
| 0.9504 | 52 |
| 0.9483 | 53 |
| 0.9404 | 54 |
| 0.9423 | 55 |
| 0.9361 | 56 |
| 0.9327 | 57 |
| 0.9327 | 58 |
| 0.9263 | 59 |
| 0.9275 | 60 |
| 0.9218 | 61 |
| 0.9202 | 62 |
| 0.9158 | 63 |
| 0.9152 | 64 |
| 0.9091 | 65 |
| 0.9104 | 66 |
| 0.9094 | 67 |
| 0.9087 | 68 |
| 0.9034 | 69 |
| 0.9063 | 70 |
| 0.8984 | 71 |
| 0.8966 | 72 |
| 0.8953 | 73 |
| 0.8910 | 74 |
| 0.8913 | 75 |
| 0.8887 | 76 |
| 0.8868 | 77 |
| 0.8868 | 78 |
| 0.8815 | 79 |
| 0.8821 | 80 |
| 0.8791 | 81 |
| 0.8752 | 82 |
| 0.8731 | 83 |
| 0.8779 | 84 |
| 0.8727 | 85 |
| 0.8702 | 86 |
| 0.8712 | 87 |
| 0.8689 | 88 |
| 0.8646 | 89 |
| 0.8644 | 90 |
| 0.8608 | 91 |
| 0.8643 | 92 |
| 0.8602 | 93 |
| 0.8605 | 94 |
| 0.8568 | 95 |
| 0.8567 | 96 |
| 0.8557 | 97 |
| 0.8543 | 98 |
| 0.8536 | 99 |
Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1