Model Card of lmqg/mt5-base-esquad-qg
This model is fine-tuned version of google/mt5-base for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-base
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-base-esquad-qg")
# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 84.47 | default | lmqg/qg_esquad |
Bleu_1 | 26.73 | default | lmqg/qg_esquad |
Bleu_2 | 18.46 | default | lmqg/qg_esquad |
Bleu_3 | 13.5 | default | lmqg/qg_esquad |
Bleu_4 | 10.15 | default | lmqg/qg_esquad |
METEOR | 23.43 | default | lmqg/qg_esquad |
MoverScore | 59.62 | default | lmqg/qg_esquad |
ROUGE_L | 25.45 | default | lmqg/qg_esquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 89.68 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 64.22 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 89.7 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 64.24 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 89.66 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 64.21 | default | lmqg/qg_esquad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/mt5-base-esquad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 80.79 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 55.25 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 78.45 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 53.7 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 83.34 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 56.99 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 10
- batch: 4
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}