generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

distilroberta-base-finetuned-marktextepoch_n200

This model is a fine-tuned version of distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss
2.2313 1.0 1500 2.1592
2.1731 2.0 3000 2.1277
2.153 3.0 4500 2.1144
2.1469 4.0 6000 2.1141
2.1281 5.0 7500 2.1374
2.1043 6.0 9000 2.1069
2.0834 7.0 10500 2.0993
2.0602 8.0 12000 2.0817
2.024 9.0 13500 2.0918
2.0261 10.0 15000 2.0793
1.9889 11.0 16500 2.0567
1.9915 12.0 18000 2.0700
1.9532 13.0 19500 2.0436
1.9362 14.0 21000 2.0596
1.9024 15.0 22500 2.0189
1.9262 16.0 24000 2.0435
1.8883 17.0 25500 2.0430
1.8867 18.0 27000 2.0416
1.8807 19.0 28500 2.0051
1.8517 20.0 30000 2.0338
1.8357 21.0 31500 2.0166
1.8241 22.0 33000 2.0355
1.7985 23.0 34500 2.0073
1.8061 24.0 36000 2.0473
1.7996 25.0 37500 2.0446
1.7786 26.0 39000 2.0086
1.771 27.0 40500 2.0294
1.7549 28.0 42000 2.0127
1.7726 29.0 43500 2.0191
1.7275 30.0 45000 2.0182
1.708 31.0 46500 2.0130
1.7345 32.0 48000 2.0155
1.7044 33.0 49500 1.9898
1.7126 34.0 51000 2.0166
1.698 35.0 52500 1.9879
1.6637 36.0 54000 2.0311
1.6854 37.0 55500 2.0355
1.6585 38.0 57000 2.0094
1.6418 39.0 58500 2.0042
1.667 40.0 60000 2.0116
1.6507 41.0 61500 2.0095
1.622 42.0 63000 2.0158
1.6381 43.0 64500 2.0339
1.6099 44.0 66000 2.0082
1.6076 45.0 67500 2.0207
1.5805 46.0 69000 2.0172
1.5862 47.0 70500 2.0132
1.5806 48.0 72000 2.0198
1.574 49.0 73500 2.0181
1.5718 50.0 75000 2.0086
1.5591 51.0 76500 1.9832
1.5468 52.0 78000 2.0167
1.5637 53.0 79500 2.0118
1.5117 54.0 81000 2.0290
1.5363 55.0 82500 2.0011
1.4976 56.0 84000 2.0160
1.5129 57.0 85500 2.0224
1.4964 58.0 87000 2.0219
1.4906 59.0 88500 2.0212
1.4941 60.0 90000 2.0255
1.4876 61.0 91500 2.0116
1.4837 62.0 93000 2.0176
1.4661 63.0 94500 2.0388
1.4634 64.0 96000 2.0165
1.4449 65.0 97500 2.0185
1.468 66.0 99000 2.0246
1.4567 67.0 100500 2.0244
1.4367 68.0 102000 2.0093
1.4471 69.0 103500 2.0101
1.4255 70.0 105000 2.0248
1.4203 71.0 106500 2.0224
1.42 72.0 108000 2.0279
1.4239 73.0 109500 2.0295
1.4126 74.0 111000 2.0196
1.4038 75.0 112500 2.0225
1.3874 76.0 114000 2.0456
1.3758 77.0 115500 2.0423
1.3924 78.0 117000 2.0184
1.3744 79.0 118500 2.0555
1.3622 80.0 120000 2.0387
1.3653 81.0 121500 2.0344
1.3724 82.0 123000 2.0184
1.3684 83.0 124500 2.0285
1.3576 84.0 126000 2.0544
1.348 85.0 127500 2.0412
1.3387 86.0 129000 2.0459
1.3416 87.0 130500 2.0329
1.3421 88.0 132000 2.0274
1.3266 89.0 133500 2.0233
1.3183 90.0 135000 2.0319
1.322 91.0 136500 2.0080
1.32 92.0 138000 2.0472
1.304 93.0 139500 2.0538
1.3061 94.0 141000 2.0340
1.3199 95.0 142500 2.0456
1.2985 96.0 144000 2.0167
1.3021 97.0 145500 2.0204
1.2787 98.0 147000 2.0645
1.2879 99.0 148500 2.0345
1.2695 100.0 150000 2.0340
1.2884 101.0 151500 2.0602
1.2747 102.0 153000 2.0667
1.2607 103.0 154500 2.0551
1.2551 104.0 156000 2.0544
1.2557 105.0 157500 2.0553
1.2495 106.0 159000 2.0370
1.26 107.0 160500 2.0568
1.2499 108.0 162000 2.0427
1.2438 109.0 163500 2.0184
1.2496 110.0 165000 2.0227
1.2332 111.0 166500 2.0621
1.2231 112.0 168000 2.0661
1.211 113.0 169500 2.0673
1.217 114.0 171000 2.0544
1.2206 115.0 172500 2.0542
1.2083 116.0 174000 2.0592
1.2205 117.0 175500 2.0451
1.2065 118.0 177000 2.0402
1.1988 119.0 178500 2.0615
1.218 120.0 180000 2.0374
1.1917 121.0 181500 2.0349
1.1854 122.0 183000 2.0790
1.1819 123.0 184500 2.0766
1.2029 124.0 186000 2.0364
1.1851 125.0 187500 2.0568
1.1734 126.0 189000 2.0445
1.1701 127.0 190500 2.0770
1.1824 128.0 192000 2.0566
1.1604 129.0 193500 2.0542
1.1733 130.0 195000 2.0525
1.1743 131.0 196500 2.0577
1.1692 132.0 198000 2.0723
1.1519 133.0 199500 2.0567
1.1401 134.0 201000 2.0795
1.1692 135.0 202500 2.0625
1.157 136.0 204000 2.0793
1.1495 137.0 205500 2.0782
1.1479 138.0 207000 2.0392
1.1247 139.0 208500 2.0796
1.143 140.0 210000 2.0369
1.1324 141.0 211500 2.0699
1.1341 142.0 213000 2.0694
1.1317 143.0 214500 2.0569
1.1254 144.0 216000 2.0545
1.1156 145.0 217500 2.0708
1.1353 146.0 219000 2.0767
1.1312 147.0 220500 2.0523
1.1224 148.0 222000 2.0565
1.106 149.0 223500 2.0696
1.1069 150.0 225000 2.0478
1.1011 151.0 226500 2.0475
1.0985 152.0 228000 2.0888
1.1107 153.0 229500 2.0756
1.1058 154.0 231000 2.0812
1.1027 155.0 232500 2.0597
1.0996 156.0 234000 2.0684
1.0987 157.0 235500 2.0629
1.0881 158.0 237000 2.0701
1.1143 159.0 238500 2.0740
1.0823 160.0 240000 2.0869
1.0925 161.0 241500 2.0567
1.1034 162.0 243000 2.0833
1.0759 163.0 244500 2.0585
1.0998 164.0 246000 2.0293
1.0891 165.0 247500 2.0608
1.1036 166.0 249000 2.0831
1.076 167.0 250500 2.0979
1.0895 168.0 252000 2.0882
1.0825 169.0 253500 2.0742
1.0793 170.0 255000 2.0841
1.079 171.0 256500 2.0829
1.0653 172.0 258000 2.0888
1.0834 173.0 259500 2.0784
1.0721 174.0 261000 2.0859
1.0712 175.0 262500 2.0810
1.0494 176.0 264000 2.0605
1.0654 177.0 265500 2.0623
1.077 178.0 267000 2.0756
1.056 179.0 268500 2.0782
1.0523 180.0 270000 2.0966
1.0656 181.0 271500 2.0750
1.0636 182.0 273000 2.0769
1.0851 183.0 274500 2.0872
1.0562 184.0 276000 2.0893
1.0534 185.0 277500 2.0661
1.0514 186.0 279000 2.0712
1.062 187.0 280500 2.0769
1.0683 188.0 282000 2.0765
1.0606 189.0 283500 2.0735
1.0555 190.0 285000 2.0710
1.0568 191.0 286500 2.0860
1.0502 192.0 288000 2.0587
1.0437 193.0 289500 2.0998
1.0534 194.0 291000 2.0418
1.062 195.0 292500 2.0724
1.0457 196.0 294000 2.0612
1.0501 197.0 295500 2.1012
1.0728 198.0 297000 2.0721
1.0413 199.0 298500 2.0535
1.0461 200.0 300000 2.0531

Framework versions