<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
bert-base-uncased_title_fine_tuned
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3368
 - Accuracy: {'accuracy': 0.8810840405146455}
 - Recall: {'recall': 0.8611674554879423}
 - Precision: {'precision': 0.890468422279189}
 - F1: {'f1': 0.8755728689275893}
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
 - train_batch_size: 24
 - eval_batch_size: 24
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 1000
 - num_epochs: 4
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | 
|---|---|---|---|---|---|---|---|
| 0.3224 | 1.0 | 3045 | 0.3079 | {'accuracy': 0.8730358609362168} | {'recall': 0.8139508677034032} | {'precision': 0.915346597389431} | {'f1': 0.861676110945422} | 
| 0.2818 | 2.0 | 6090 | 0.3153 | {'accuracy': 0.8814672871612373} | {'recall': 0.8299526707234618} | {'precision': 0.9182146864480738} | {'f1': 0.8718555785735426} | 
| 0.2394 | 3.0 | 9135 | 0.3104 | {'accuracy': 0.8830002737476047} | {'recall': 0.8548568852828488} | {'precision': 0.8993479549496147} | {'f1': 0.8765382171124848} | 
| 0.204 | 4.0 | 12180 | 0.3368 | {'accuracy': 0.8810840405146455} | {'recall': 0.8611674554879423} | {'precision': 0.890468422279189} | {'f1': 0.8755728689275893} | 
Framework versions
- Transformers 4.21.1
 - Pytorch 1.12.0+cu113
 - Datasets 2.4.0
 - Tokenizers 0.12.1