generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

wav2vec2-xls-r-300m-arabic_speech_commands_10s_one_speaker_40_classes

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.6878 1.0 25 3.6888 0.03
3.6867 2.0 50 3.6867 0.025
3.6652 3.0 75 3.6260 0.1558
3.3912 4.0 100 3.3953 0.1254
3.103 5.0 125 3.1497 0.125
2.661 6.0 150 2.7077 0.2196
2.374 7.0 175 2.7057 0.2112
1.9198 8.0 200 2.5269 0.2929
1.7809 9.0 225 2.8878 0.2204
1.4742 10.0 250 2.1809 0.3917
1.3373 11.0 275 1.9832 0.4412
1.0601 12.0 300 2.0539 0.4958
0.9018 13.0 325 2.2291 0.46
0.6925 14.0 350 1.5878 0.5946
0.6181 15.0 375 2.1394 0.5283
0.4066 16.0 400 2.2009 0.5363
0.4346 17.0 425 1.9644 0.5625
0.3882 18.0 450 1.3859 0.6658
0.3382 19.0 475 1.6092 0.6771
0.3172 20.0 500 1.7496 0.6571
0.322 21.0 525 1.6505 0.6621
0.1848 22.0 550 2.1235 0.5933
0.2695 23.0 575 2.1248 0.6054
0.2091 24.0 600 2.0269 0.6312
0.172 25.0 625 1.5532 0.7167
0.2043 26.0 650 1.9791 0.6358
0.1744 27.0 675 1.4877 0.7458
0.1837 28.0 700 1.8348 0.6896
0.2209 29.0 725 2.1801 0.6267
0.144 30.0 750 1.9425 0.6692
0.0513 31.0 775 1.6531 0.7096
0.0494 32.0 800 1.8506 0.715
0.0697 33.0 825 1.9599 0.6933
0.1528 34.0 850 2.0854 0.6521
0.0769 35.0 875 2.6593 0.6483
0.0691 36.0 900 1.9098 0.7321
0.0401 37.0 925 2.0541 0.6967
0.0287 38.0 950 2.3037 0.6904
0.1034 39.0 975 1.6426 0.7304
0.0876 40.0 1000 2.1685 0.6775
0.0557 41.0 1025 2.2643 0.6821
0.0395 42.0 1050 2.0308 0.6979
0.1046 43.0 1075 2.0277 0.7021
0.0768 44.0 1100 1.7130 0.7371
0.048 45.0 1125 1.9549 0.7192
0.0835 46.0 1150 1.9024 0.7179
0.0505 47.0 1175 2.0993 0.7125
0.0515 48.0 1200 1.9806 0.7183
0.0556 49.0 1225 1.8291 0.7321
0.0886 50.0 1250 2.1479 0.6992
0.0769 51.0 1275 2.0540 0.7146
0.0092 52.0 1300 1.8446 0.7462
0.0032 53.0 1325 2.0847 0.7125
0.0593 54.0 1350 1.9553 0.7304
0.0053 55.0 1375 1.8164 0.74
0.0101 56.0 1400 1.7514 0.7421
0.0155 57.0 1425 1.6395 0.7604
0.0035 58.0 1450 1.7393 0.7504
0.0019 59.0 1475 1.8103 0.7671
0.0144 60.0 1500 1.8234 0.7588
0.0028 61.0 1525 1.8479 0.7529
0.0306 62.0 1550 1.7948 0.7454
0.0028 63.0 1575 1.7417 0.7562
0.0095 64.0 1600 1.6973 0.7592
0.0086 65.0 1625 1.9997 0.7342
0.0953 66.0 1650 1.8202 0.7538
0.0018 67.0 1675 1.8316 0.7533
0.0053 68.0 1700 1.8916 0.7475
0.004 69.0 1725 1.8794 0.7521
0.0169 70.0 1750 1.8215 0.7533
0.0013 71.0 1775 1.7565 0.7508
0.0008 72.0 1800 1.8171 0.7454
0.0011 73.0 1825 1.8354 0.7479
0.0025 74.0 1850 1.8283 0.7488
0.0013 75.0 1875 1.8876 0.7412
0.0415 76.0 1900 1.8789 0.7454
0.0341 77.0 1925 1.8665 0.7512
0.0149 78.0 1950 1.8579 0.7488
0.0018 79.0 1975 1.8571 0.7488
0.008 80.0 2000 1.8596 0.7479

Framework versions