generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

training

This model is a fine-tuned version of google/electra-base-discriminator on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Attackid Precision Attackid Recall Attackid F1 Attackid Number Cve Precision Cve Recall Cve F1 Cve Number Defenderthreat Precision Defenderthreat Recall Defenderthreat F1 Defenderthreat Number Domain Precision Domain Recall Domain F1 Domain Number Email Precision Email Recall Email F1 Email Number Filepath Precision Filepath Recall Filepath F1 Filepath Number Hostname Precision Hostname Recall Hostname F1 Hostname Number Ipv4 Precision Ipv4 Recall Ipv4 F1 Ipv4 Number Md5 Precision Md5 Recall Md5 F1 Md5 Number Sha1 Precision Sha1 Recall Sha1 F1 Sha1 Number Sha256 Precision Sha256 Recall Sha256 F1 Sha256 Number Uri Precision Uri Recall Uri F1 Uri Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.5093 0.37 500 0.3512 0.0 0.0 0.0 6 0.0 0.0 0.0 11 0.0 0.0 0.0 2 0.0 0.0 0.0 23 0.0 0.0 0.0 3 0.2024 0.5091 0.2897 165 0.0 0.0 0.0 12 0.0 0.0 0.0 12 0.1724 0.4808 0.2538 52 0.0 0.0 0.0 7 0.3797 0.6818 0.4878 44 0.0 0.0 0.0 1 0.1844 0.4112 0.2546 0.9163
0.2742 0.75 1000 0.2719 0.0 0.0 0.0 6 0.0 0.0 0.0 11 0.0 0.0 0.0 2 0.4444 0.5217 0.48 23 0.0 0.0 0.0 3 0.4211 0.5333 0.4706 165 0.1111 0.25 0.1538 12 0.5 0.8333 0.625 12 0.6290 0.75 0.6842 52 0.0 0.0 0.0 7 0.4444 0.8182 0.5760 44 0.0 0.0 0.0 1 0.4322 0.5562 0.4864 0.9340
0.2072 1.12 1500 0.2008 0.0 0.0 0.0 6 0.2308 0.2727 0.2500 11 0.0 0.0 0.0 2 0.6842 0.5652 0.6190 23 0.0 0.0 0.0 3 0.4885 0.7758 0.5995 165 0.7857 0.9167 0.8462 12 0.75 0.75 0.75 12 0.6026 0.9038 0.7231 52 0.0 0.0 0.0 7 0.5970 0.9091 0.7207 44 0.0 0.0 0.0 1 0.5363 0.7426 0.6228 0.9484
0.1861 1.5 2000 0.2101 0.0 0.0 0.0 6 0.9091 0.9091 0.9091 11 0.0 0.0 0.0 2 0.5926 0.6957 0.6400 23 0.5 0.3333 0.4 3 0.6345 0.7576 0.6906 165 0.7333 0.9167 0.8148 12 0.8182 0.75 0.7826 12 0.6618 0.8654 0.75 52 0.0 0.0 0.0 7 0.525 0.9545 0.6774 44 0.0 0.0 0.0 1 0.6181 0.7663 0.6843 0.9495
0.1888 1.87 2500 0.1689 1.0 1.0 1.0 6 0.8182 0.8182 0.8182 11 0.0 0.0 0.0 2 0.6818 0.6522 0.6667 23 0.0 0.0 0.0 3 0.5806 0.7636 0.6597 165 0.8462 0.9167 0.8800 12 0.8182 0.75 0.7826 12 0.6486 0.9231 0.7619 52 0.0 0.0 0.0 7 0.6667 0.8636 0.7525 44 0.0 0.0 0.0 1 0.6329 0.7751 0.6968 0.9487
0.1409 2.25 3000 0.1520 1.0 1.0 1.0 6 1.0 1.0 1.0 11 0.0 0.0 0.0 2 0.6154 0.6957 0.6531 23 0.5 0.6667 0.5714 3 0.7010 0.8242 0.7577 165 0.9231 1.0 0.9600 12 0.7143 0.8333 0.7692 12 0.6528 0.9038 0.7581 52 0.0 0.0 0.0 7 0.7692 0.9091 0.8333 44 0.0 0.0 0.0 1 0.6897 0.8284 0.7527 0.9589
0.1248 2.62 3500 0.1716 0.8571 1.0 0.9231 6 1.0 1.0 1.0 11 0.0 0.0 0.0 2 0.84 0.9130 0.8750 23 0.6667 0.6667 0.6667 3 0.8155 0.8303 0.8228 165 0.8571 1.0 0.9231 12 0.75 1.0 0.8571 12 0.7031 0.8654 0.7759 52 0.0 0.0 0.0 7 0.7593 0.9318 0.8367 44 0.0 0.0 0.0 1 0.7928 0.8491 0.82 0.9583
0.1073 3.0 4000 0.1532 0.8571 1.0 0.9231 6 1.0 1.0 1.0 11 0.0 0.0 0.0 2 0.84 0.9130 0.8750 23 0.6667 0.6667 0.6667 3 0.7705 0.8545 0.8103 165 0.8571 1.0 0.9231 12 0.7059 1.0 0.8276 12 0.7313 0.9423 0.8235 52 0.0 0.0 0.0 7 0.7241 0.9545 0.8235 44 0.0 0.0 0.0 1 0.7688 0.8757 0.8188 0.9618

Framework versions