<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
training
This model is a fine-tuned version of google/electra-base-discriminator on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set:
- Loss: 0.1520
- Attackid Precision: 1.0
- Attackid Recall: 1.0
- Attackid F1: 1.0
- Attackid Number: 6
- Cve Precision: 1.0
- Cve Recall: 1.0
- Cve F1: 1.0
- Cve Number: 11
- Defenderthreat Precision: 0.0
- Defenderthreat Recall: 0.0
- Defenderthreat F1: 0.0
- Defenderthreat Number: 2
- Domain Precision: 0.6154
- Domain Recall: 0.6957
- Domain F1: 0.6531
- Domain Number: 23
- Email Precision: 0.5
- Email Recall: 0.6667
- Email F1: 0.5714
- Email Number: 3
- Filepath Precision: 0.7010
- Filepath Recall: 0.8242
- Filepath F1: 0.7577
- Filepath Number: 165
- Hostname Precision: 0.9231
- Hostname Recall: 1.0
- Hostname F1: 0.9600
- Hostname Number: 12
- Ipv4 Precision: 0.7143
- Ipv4 Recall: 0.8333
- Ipv4 F1: 0.7692
- Ipv4 Number: 12
- Md5 Precision: 0.6528
- Md5 Recall: 0.9038
- Md5 F1: 0.7581
- Md5 Number: 52
- Sha1 Precision: 0.0
- Sha1 Recall: 0.0
- Sha1 F1: 0.0
- Sha1 Number: 7
- Sha256 Precision: 0.7692
- Sha256 Recall: 0.9091
- Sha256 F1: 0.8333
- Sha256 Number: 44
- Uri Precision: 0.0
- Uri Recall: 0.0
- Uri F1: 0.0
- Uri Number: 1
- Overall Precision: 0.6897
- Overall Recall: 0.8284
- Overall F1: 0.7527
- Overall Accuracy: 0.9589
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5093 | 0.37 | 500 | 0.3512 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.2024 | 0.5091 | 0.2897 | 165 | 0.0 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | 12 | 0.1724 | 0.4808 | 0.2538 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.3797 | 0.6818 | 0.4878 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.1844 | 0.4112 | 0.2546 | 0.9163 |
0.2742 | 0.75 | 1000 | 0.2719 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.4444 | 0.5217 | 0.48 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.4211 | 0.5333 | 0.4706 | 165 | 0.1111 | 0.25 | 0.1538 | 12 | 0.5 | 0.8333 | 0.625 | 12 | 0.6290 | 0.75 | 0.6842 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.4444 | 0.8182 | 0.5760 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.4322 | 0.5562 | 0.4864 | 0.9340 |
0.2072 | 1.12 | 1500 | 0.2008 | 0.0 | 0.0 | 0.0 | 6 | 0.2308 | 0.2727 | 0.2500 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6842 | 0.5652 | 0.6190 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.4885 | 0.7758 | 0.5995 | 165 | 0.7857 | 0.9167 | 0.8462 | 12 | 0.75 | 0.75 | 0.75 | 12 | 0.6026 | 0.9038 | 0.7231 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.5363 | 0.7426 | 0.6228 | 0.9484 |
0.1861 | 1.5 | 2000 | 0.2101 | 0.0 | 0.0 | 0.0 | 6 | 0.9091 | 0.9091 | 0.9091 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.5926 | 0.6957 | 0.6400 | 23 | 0.5 | 0.3333 | 0.4 | 3 | 0.6345 | 0.7576 | 0.6906 | 165 | 0.7333 | 0.9167 | 0.8148 | 12 | 0.8182 | 0.75 | 0.7826 | 12 | 0.6618 | 0.8654 | 0.75 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.525 | 0.9545 | 0.6774 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6181 | 0.7663 | 0.6843 | 0.9495 |
0.1888 | 1.87 | 2500 | 0.1689 | 1.0 | 1.0 | 1.0 | 6 | 0.8182 | 0.8182 | 0.8182 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6818 | 0.6522 | 0.6667 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.5806 | 0.7636 | 0.6597 | 165 | 0.8462 | 0.9167 | 0.8800 | 12 | 0.8182 | 0.75 | 0.7826 | 12 | 0.6486 | 0.9231 | 0.7619 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6667 | 0.8636 | 0.7525 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6329 | 0.7751 | 0.6968 | 0.9487 |
0.1409 | 2.25 | 3000 | 0.1520 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6154 | 0.6957 | 0.6531 | 23 | 0.5 | 0.6667 | 0.5714 | 3 | 0.7010 | 0.8242 | 0.7577 | 165 | 0.9231 | 1.0 | 0.9600 | 12 | 0.7143 | 0.8333 | 0.7692 | 12 | 0.6528 | 0.9038 | 0.7581 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7692 | 0.9091 | 0.8333 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6897 | 0.8284 | 0.7527 | 0.9589 |
0.1248 | 2.62 | 3500 | 0.1716 | 0.8571 | 1.0 | 0.9231 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.84 | 0.9130 | 0.8750 | 23 | 0.6667 | 0.6667 | 0.6667 | 3 | 0.8155 | 0.8303 | 0.8228 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 0.75 | 1.0 | 0.8571 | 12 | 0.7031 | 0.8654 | 0.7759 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7593 | 0.9318 | 0.8367 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7928 | 0.8491 | 0.82 | 0.9583 |
0.1073 | 3.0 | 4000 | 0.1532 | 0.8571 | 1.0 | 0.9231 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.84 | 0.9130 | 0.8750 | 23 | 0.6667 | 0.6667 | 0.6667 | 3 | 0.7705 | 0.8545 | 0.8103 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 0.7059 | 1.0 | 0.8276 | 12 | 0.7313 | 0.9423 | 0.8235 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7241 | 0.9545 | 0.8235 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7688 | 0.8757 | 0.8188 | 0.9618 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1