<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
Imene/vit-base-patch16-224-in21k-wwwwwi
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 3.2187
- Train Accuracy: 0.5652
- Train Top-3-accuracy: 0.7611
- Validation Loss: 3.8221
- Validation Accuracy: 0.2540
- Validation Top-3-accuracy: 0.4409
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4920, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
---|---|---|---|---|---|---|
5.3476 | 0.0283 | 0.0716 | 5.1306 | 0.0483 | 0.1240 | 0 |
4.9357 | 0.0914 | 0.2057 | 4.7998 | 0.1158 | 0.2385 | 1 |
4.6155 | 0.1641 | 0.3230 | 4.5616 | 0.1430 | 0.2891 | 2 |
4.3325 | 0.2269 | 0.4188 | 4.3480 | 0.1722 | 0.3391 | 3 |
4.0702 | 0.2915 | 0.4984 | 4.1662 | 0.2042 | 0.3886 | 4 |
3.8262 | 0.3638 | 0.5758 | 4.0416 | 0.2296 | 0.4067 | 5 |
3.6117 | 0.4258 | 0.6415 | 3.9451 | 0.2329 | 0.4234 | 6 |
3.4324 | 0.4855 | 0.6956 | 3.8690 | 0.2499 | 0.4397 | 7 |
3.2991 | 0.5320 | 0.7376 | 3.8351 | 0.2553 | 0.4359 | 8 |
3.2187 | 0.5652 | 0.7611 | 3.8221 | 0.2540 | 0.4409 | 9 |
Framework versions
- Transformers 4.21.2
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1