sentence-transformers feature-extraction sentence-similarity transformers ko en

moco-sentencedistilbertV2.0

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence_transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('bongsoo/moco-sentencedistilbertV2.0')
embeddings = model.encode(sentences)
print(embeddings)

# sklearn 을 이용하여 cosine_scores를 구함
# => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함.
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
cosine_scores = 1 - (paired_cosine_distances(embeddings[0].reshape(1,-1), embeddings[1].reshape(1,-1)))

print(f'*cosine_score:{cosine_scores[0]}')

출력(Outputs)

[[ 9.7172342e-02 -3.3226651e-01 -7.7130608e-05 ...  1.3900512e-02 2.1072578e-01 -1.5386048e-01]
 [ 2.3313640e-02 -8.4675789e-02 -3.7715461e-06 ...  2.4005771e-02 -1.6602692e-01 -1.2729791e-01]]
*cosine_score:0.3383665680885315

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bongsoo/moco-sentencedistilbertV2.0')
model = AutoModel.from_pretrained('bongsoo/moco-sentencedistilbertV2.0')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

# sklearn 을 이용하여 cosine_scores를 구함
# => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함.
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1)))

print(f'*cosine_score:{cosine_scores[0]}')

출력(Outputs)

Sentence embeddings:
tensor([[ 9.7172e-02, -3.3227e-01, -7.7131e-05,  ...,  1.3901e-02, 2.1073e-01, -1.5386e-01],
        [ 2.3314e-02, -8.4676e-02, -3.7715e-06,  ...,  2.4006e-02, -1.6603e-01, -1.2730e-01]])
*cosine_score:0.3383665680885315

Evaluation Results

<!--- Describe how your model was evaluated -->

모델 korsts klue-sts korsts+klue-sts stsb_multi_mt
bongsoo/sentencedistilbertV1.2 0.819 0.858 0.630 0.837
distiluse-base-multilingual-cased-v2 0.747 0.785 0.577 0.807
paraphrase-multilingual-mpnet-base-v2 0.820 0.799 0.711 0.868
bongsoo/moco-sentencedistilbertV2.0 0.812 0.847 0.627 0.837

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training(훈련 과정)

The model was trained with the parameters:

1. MLM 훈련

2. STS 훈련

3.증류(distilation) 훈련

4.STS 훈련 -sentencebert 모델을 sts 훈련시킴

<br>모델 제작 과정에 대한 자세한 내용은 여기를 참조 하세요.

DataLoader:

torch.utils.data.dataloader.DataLoader of length 1035 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Config:

{
  "_name_or_path": "../../data11/model/sbert/sbert-mdistilbertV2.0.2-distil",
  "activation": "gelu",
  "architectures": [
    "DistilBertModel"
  ],
  "attention_dropout": 0.1,
  "dim": 768,
  "dropout": 0.1,
  "hidden_dim": 3072,
  "initializer_range": 0.02,
  "max_position_embeddings": 512,
  "model_type": "distilbert",
  "n_heads": 12,
  "n_layers": 6,
  "output_past": true,
  "pad_token_id": 0,
  "qa_dropout": 0.1,
  "seq_classif_dropout": 0.2,
  "sinusoidal_pos_embds": false,
  "tie_weights_": true,
  "torch_dtype": "float32",
  "transformers_version": "4.21.2",
  "vocab_size": 164314
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

<!--- Describe where people can find more information --> bongsoo