sklearn skops tabular-classification

Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

Hyperparameters

The model is trained with below hyperparameters.

<details> <summary> Click to expand </summary>

Hyperparameter Value
ccp_alpha 0.0
class_weight
criterion gini
max_depth
max_features
max_leaf_nodes
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
random_state
splitter best

</details>

Model Plot

The model plot is below.

<style>#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe {color: black;background-color: white;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe pre{padding: 0;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-toggleable {background-color: white;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-estimator:hover {background-color: #d4ebff;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-item {z-index: 1;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-parallel-item:only-child::after {width: 0;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-container {/* jupyter's normalize.less sets [hidden] { display: none; } but bootstrap.min.css set [hidden] { display: none !important; } so we also need the !important here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe div.sk-text-repr-fallback {display: none;}</style><div id="sk-e8a885f1-cbc4-4c9a-b46b-c755fe7af8fe" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>DecisionTreeClassifier()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="baa9fb41-2382-4981-824f-a69815f63fd3" type="checkbox" checked><label for="baa9fb41-2382-4981-824f-a69815f63fd3" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier()</pre></div></div></div></div></div>

## Evaluation Results

You can find the details about evaluation process and the evaluation results.

Metric Value

How to Get Started with the Model

Use the code below to get started with the model.

import joblib
import json
import pandas as pd
clf = joblib.load(example.pkl)
with open("config.json") as f:
    config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]