<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
bert-base-cased-sst2
This model is a fine-tuned version of bert-base-cased on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2345
- Accuracy: 0.9140
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6253 | 0.12 | 500 | 0.3641 | 0.8567 |
0.3189 | 0.24 | 1000 | 0.2656 | 0.8899 |
0.2701 | 0.36 | 1500 | 0.3463 | 0.8807 |
0.2533 | 0.48 | 2000 | 0.2409 | 0.9071 |
0.2436 | 0.59 | 2500 | 0.2345 | 0.9140 |
0.2155 | 0.71 | 3000 | 0.2926 | 0.9002 |
0.22 | 0.83 | 3500 | 0.2998 | 0.9094 |
0.2146 | 0.95 | 4000 | 0.2481 | 0.9140 |
0.1737 | 1.07 | 4500 | 0.2802 | 0.9128 |
0.1578 | 1.19 | 5000 | 0.3536 | 0.9083 |
0.1534 | 1.31 | 5500 | 0.4714 | 0.8830 |
0.1641 | 1.43 | 6000 | 0.3235 | 0.9128 |
0.1601 | 1.54 | 6500 | 0.3133 | 0.9094 |
0.1644 | 1.66 | 7000 | 0.3021 | 0.9071 |
0.1578 | 1.78 | 7500 | 0.3552 | 0.9094 |
0.1582 | 1.9 | 8000 | 0.2896 | 0.9106 |
0.1448 | 2.02 | 8500 | 0.3343 | 0.9232 |
0.0989 | 2.14 | 9000 | 0.3882 | 0.9048 |
0.1098 | 2.26 | 9500 | 0.3218 | 0.9037 |
0.1056 | 2.38 | 10000 | 0.3426 | 0.9140 |
0.112 | 2.49 | 10500 | 0.3631 | 0.9025 |
0.1066 | 2.61 | 11000 | 0.4084 | 0.9106 |
0.126 | 2.73 | 11500 | 0.3191 | 0.9117 |
0.12 | 2.85 | 12000 | 0.4091 | 0.9048 |
0.1092 | 2.97 | 12500 | 0.3602 | 0.9060 |
0.0826 | 3.09 | 13000 | 0.3571 | 0.9163 |
0.0603 | 3.21 | 13500 | 0.4021 | 0.9243 |
0.0636 | 3.33 | 14000 | 0.3893 | 0.9186 |
0.0775 | 3.44 | 14500 | 0.4373 | 0.9151 |
0.0842 | 3.56 | 15000 | 0.4100 | 0.9174 |
0.0902 | 3.68 | 15500 | 0.3878 | 0.9037 |
0.092 | 3.8 | 16000 | 0.3723 | 0.9140 |
0.0978 | 3.92 | 16500 | 0.3492 | 0.9163 |
0.0682 | 4.04 | 17000 | 0.4597 | 0.9209 |
0.0481 | 4.16 | 17500 | 0.4668 | 0.9186 |
0.0561 | 4.28 | 18000 | 0.4083 | 0.9209 |
0.0571 | 4.39 | 18500 | 0.4040 | 0.9174 |
0.0511 | 4.51 | 19000 | 0.4032 | 0.9197 |
0.062 | 4.63 | 19500 | 0.4090 | 0.9140 |
0.0618 | 4.75 | 20000 | 0.4150 | 0.9106 |
0.0599 | 4.87 | 20500 | 0.3623 | 0.9209 |
0.0614 | 4.99 | 21000 | 0.4421 | 0.9083 |
0.0385 | 5.11 | 21500 | 0.4328 | 0.9197 |
0.0331 | 5.23 | 22000 | 0.4569 | 0.9209 |
0.0343 | 5.34 | 22500 | 0.5130 | 0.9094 |
0.0389 | 5.46 | 23000 | 0.4741 | 0.9232 |
0.0413 | 5.58 | 23500 | 0.4654 | 0.9060 |
0.0444 | 5.7 | 24000 | 0.4888 | 0.9014 |
0.0406 | 5.82 | 24500 | 0.4085 | 0.9220 |
0.031 | 5.94 | 25000 | 0.4760 | 0.9197 |
0.037 | 6.06 | 25500 | 0.5403 | 0.9094 |
0.0239 | 6.18 | 26000 | 0.5945 | 0.9060 |
0.0267 | 6.29 | 26500 | 0.4595 | 0.9140 |
0.0338 | 6.41 | 27000 | 0.4923 | 0.9106 |
0.0293 | 6.53 | 27500 | 0.6128 | 0.8979 |
0.0253 | 6.65 | 28000 | 0.5428 | 0.9083 |
0.0296 | 6.77 | 28500 | 0.5244 | 0.9002 |
0.0279 | 6.89 | 29000 | 0.5732 | 0.9048 |
0.0321 | 7.01 | 29500 | 0.5824 | 0.9094 |
0.0179 | 7.13 | 30000 | 0.6336 | 0.9094 |
0.0177 | 7.24 | 30500 | 0.7145 | 0.9140 |
0.0262 | 7.36 | 31000 | 0.5504 | 0.9083 |
0.0182 | 7.48 | 31500 | 0.5924 | 0.9071 |
0.0187 | 7.6 | 32000 | 0.5613 | 0.9151 |
0.012 | 7.72 | 32500 | 0.6129 | 0.9083 |
0.021 | 7.84 | 33000 | 0.5698 | 0.9106 |
0.024 | 7.96 | 33500 | 0.6231 | 0.9083 |
0.0136 | 8.08 | 34000 | 0.7155 | 0.9117 |
0.0088 | 8.19 | 34500 | 0.7918 | 0.9060 |
0.0129 | 8.31 | 35000 | 0.6727 | 0.9094 |
0.0113 | 8.43 | 35500 | 0.6531 | 0.9117 |
0.0141 | 8.55 | 36000 | 0.7040 | 0.9037 |
0.0111 | 8.67 | 36500 | 0.6551 | 0.9094 |
0.0111 | 8.79 | 37000 | 0.6928 | 0.9071 |
0.0116 | 8.91 | 37500 | 0.6313 | 0.9094 |
0.0107 | 9.03 | 38000 | 0.7104 | 0.9094 |
0.006 | 9.14 | 38500 | 0.7446 | 0.9117 |
0.0048 | 9.26 | 39000 | 0.7537 | 0.9140 |
0.0099 | 9.38 | 39500 | 0.7715 | 0.9140 |
0.0067 | 9.5 | 40000 | 0.7633 | 0.9117 |
0.0037 | 9.62 | 40500 | 0.7669 | 0.9128 |
0.006 | 9.74 | 41000 | 0.7714 | 0.9128 |
0.0063 | 9.86 | 41500 | 0.8020 | 0.9106 |
0.0107 | 9.98 | 42000 | 0.7985 | 0.9117 |
Framework versions
- Transformers 4.21.3
- Pytorch 1.7.1
- Datasets 1.18.3
- Tokenizers 0.11.6