moco-sentencebertV2.0
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
- 이 모델은 bongsoo/mbertV2.0 MLM 모델을 <br>sentencebert로 만든 후,추가적으로 STS Tearch-student 증류 학습 시켜 만든 모델 입니다.
 - vocab: 152,537 개(기존 119,548 vocab 에 32,989 신규 vocab 추가)
 
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence_transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bongsoo/moco-sentencebertV2.0')
embeddings = model.encode(sentences)
print(embeddings)
# sklearn 을 이용하여 cosine_scores를 구함
# => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함.
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
cosine_scores = 1 - (paired_cosine_distances(embeddings[0].reshape(1,-1), embeddings[1].reshape(1,-1)))
print(f'*cosine_score:{cosine_scores[0]}')
출력(Outputs)
[[ 0.16649279 -0.2933038  -0.00391259 ...  0.00720964  0.18175027  -0.21052675]
 [ 0.10106096 -0.11454111 -0.00378215 ... -0.009032   -0.2111504   -0.15030429]]
*cosine_score:0.3352515697479248
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bongsoo/moco-sentencebertV2.0')
model = AutoModel.from_pretrained('bongsoo/moco-sentencebertV2.0')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
# sklearn 을 이용하여 cosine_scores를 구함
# => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함.
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1)))
print(f'*cosine_score:{cosine_scores[0]}')
출력(Outputs)
Sentence embeddings:
tensor([[ 0.1665, -0.2933, -0.0039,  ...,  0.0072,  0.1818, -0.2105],
        [ 0.1011, -0.1145, -0.0038,  ..., -0.0090, -0.2112, -0.1503]])
*cosine_score:0.3352515697479248
Evaluation Results
<!--- Describe how your model was evaluated -->
- 성능 측정을 위한 말뭉치는, 아래 한국어 (kor), 영어(en) 평가 말뭉치를 이용함 <br> 한국어 : korsts(1,379쌍문장) 와 klue-sts(519쌍문장) <br> 영어 : stsb_multi_mt(1,376쌍문장) 와 glue:stsb (1,500쌍문장)
 - 성능 지표는 cosin.spearman 측정하여 비교함.
 - 평가 측정 코드는 여기 참조
 
| 모델 | korsts | klue-sts | korsts+klue-sts | stsb_multi_mt | glue(stsb) | 
|---|---|---|---|---|---|
| distiluse-base-multilingual-cased-v2 | 0.747 | 0.785 | 0.577 | 0.807 | 0.819 | 
| paraphrase-multilingual-mpnet-base-v2 | 0.820 | 0.799 | 0.711 | 0.868 | 0.890 | 
| bongsoo/sentencedistilbertV1.2 | 0.819 | 0.858 | 0.630 | 0.837 | 0.873 | 
| bongsoo/moco-sentencedistilbertV2.0 | 0.812 | 0.847 | 0.627 | 0.837 | 0.877 | 
| bongsoo/moco-sentencebertV2.0 | 0.824 | 0.841 | 0.635 | 0.843 | 0.879 | 
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training(훈련 과정)
The model was trained with the parameters:
1. MLM 훈련
- 입력 모델 : bert-base-multilingual-cased
 - 말뭉치 : 훈련 : bongsoo/moco-corpus-kowiki2022(7.6M) , 평가: bongsoo/bongevalsmall
 - HyperParameter : LearningRate : 5e-5, epochs: 8, batchsize: 32, max_token_len : 128
 - vocab : 152,537개 (기존 119,548 에 32,989 신규 vocab 추가)
 - 출력 모델 : mbertV2.0 (size: 813MB)
 - 훈련시간 : 90h/1GPU (24GB/19.6GB use)
 - loss : 훈련loss: 2.258400, 평가loss: 3.102096, perplexity: 19.78158(bong_eval:1,500)
 - 훈련코드 여기 참조
 
2. STS 훈련 =>bert를 sentencebert로 만듬.
- 입력 모델 : mbertV2.0
 - 말뭉치 : korsts + kluestsV1.1 + stsb_multi_mt + mteb/sickr-sts (총:33,093)
 - HyperParameter : LearningRate : 3e-5, epochs: 200, batchsize: 32, max_token_len : 128
 - 출력 모델 : sbert-mbertV2.0 (size: 813MB)
 - 훈련시간 : 9h20m/1GPU (24GB/9.0GB use)
 - loss(cosin_spearman) : 0.799(말뭉치:korsts(tune_test.tsv))
 - 훈련코드 여기 참조
 
3.증류(distilation) 훈련
- 학생 모델 : sbert-mbertV2.0
 - 교사 모델 : paraphrase-multilingual-mpnet-base-v2
 - 말뭉치 : en_ko_train.tsv(한국어-영어 사회과학분야 병렬 말뭉치 : 1.1M)
 - HyperParameter : LearningRate : 5e-5, epochs: 40, batchsize: 128, max_token_len : 128
 - 출력 모델 : sbert-mlbertV2.0-distil
 - 훈련시간 : 17h/1GPU (24GB/18.6GB use)
 - 훈련코드 여기 참조
 
4.STS 훈련 => sentencebert 모델을 sts 훈련시킴
- 입력 모델 : sbert-mlbertV2.0-distil
 - 말뭉치 : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (총:38,842)
 - HyperParameter : LearningRate : 3e-5, epochs: 800, batchsize: 64, max_token_len : 128
 - 출력 모델 : moco-sentencebertV2.0
 - 훈련시간 : 25h/1GPU (24GB/13GB use)
 - 훈련코드 여기 참조
 
<br>모델 제작 과정에 대한 자세한 내용은 여기를 참조 하세요.
DataLoader:
torch.utils.data.dataloader.DataLoader of length 1035 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Config:
{
  "_name_or_path": "../../data11/model/sbert/sbert-mbertV2.0-distil",
  "architectures": [
    "BertModel"
  ],
  "attention_probs_dropout_prob": 0.1,
  "classifier_dropout": null,
  "directionality": "bidi",
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "torch_dtype": "float32",
  "transformers_version": "4.21.2",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 152537
}
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
<!--- Describe where people can find more information --> bongsoo