nagisa_bert
A BERT model for nagisa. The model is available in Transformers π€.
A tokenizer for nagisa_bert is available here.
Install
To use this model, the following python library must be installed. You can install nagisa_bert by using the pip command.
Python 3.7+ on Linux or macOS is required.
pip install nagisa_bert
Usage
This model is available in Transformer's pipeline method.
from transformers import pipeline
from nagisa_bert import NagisaBertTokenizer
text = "nagisaγ§[MASK]γ§γγγ’γγ«γ§γ"
tokenizer = NagisaBertTokenizer.from_pretrained("taishi-i/nagisa_bert")
fill_mask = pipeline("fill-mask", model='taishi-i/nagisa_bert', tokenizer=tokenizer)
print(fill_mask(text))
[{'score': 0.1385931372642517,
'sequence': 'nagisa γ§ δ½Ώη¨ γ§γγ γ’γγ« γ§γ',
'token': 8092,
'token_str': 'δ½Ώ η¨'},
{'score': 0.11947669088840485,
'sequence': 'nagisa γ§ ε©η¨ γ§γγ γ’γγ« γ§γ',
'token': 8252,
'token_str': 'ε© η¨'},
{'score': 0.04910655692219734,
'sequence': 'nagisa γ§ δ½ζ γ§γγ γ’γγ« γ§γ',
'token': 9559,
'token_str': 'δ½ ζ'},
{'score': 0.03792576864361763,
'sequence': 'nagisa γ§ θ³Όε
₯ γ§γγ γ’γγ« γ§γ',
'token': 9430,
'token_str': 'θ³Ό ε
₯'},
{'score': 0.026893319562077522,
'sequence': 'nagisa γ§ ε
₯ζ γ§γγ γ’γγ« γ§γ',
'token': 11273,
'token_str': 'ε
₯ ζ'}]
Tokenization and vectorization.
from transformers import BertModel
from nagisa_bert import NagisaBertTokenizer
text = "nagisaγ§[MASK]γ§γγγ’γγ«γ§γ"
tokenizer = NagisaBertTokenizer.from_pretrained("taishi-i/nagisa_bert")
tokens = tokenizer.tokenize(text)
print(tokens)
# ['na', '##g', '##is', '##a', 'γ§', '[MASK]', 'γ§γγ', 'γ’γγ«', 'γ§γ']
model = BertModel.from_pretrained("taishi-i/nagisa_bert")
h = model(**tokenizer(text, return_tensors="pt")).last_hidden_state
print(h)
tensor([[[-0.2912, -0.6818, -0.4097, ..., 0.0262, -0.3845, 0.5816],
[ 0.2504, 0.2143, 0.5809, ..., -0.5428, 1.1805, 1.8701],
[ 0.1890, -0.5816, -0.5469, ..., -1.2081, -0.2341, 1.0215],
...,
[-0.4360, -0.2546, -0.2824, ..., 0.7420, -0.2904, 0.3070],
[-0.6598, -0.7607, 0.0034, ..., 0.2982, 0.5126, 1.1403],
[-0.2505, -0.6574, -0.0523, ..., 0.9082, 0.5851, 1.2625]]],
grad_fn=<NativeLayerNormBackward0>)
Model description
Architecture
The model architecture is the same as the BERT bert-base-uncased architecture (12 layers, 768 dimensions of hidden states, and 12 attention heads).
Training Data
The models is trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 8, 2022 with make_corpus_wiki.py and create_pretraining_data.py.
Training
The model is trained with the default parameters of transformers.BertConfig. Due to GPU memory limitations, the batch size is set to small; 16 instances per batch, and 2M training steps.
Tutorial
You can find here a list of the notebooks on Japanese NLP using pre-trained models and transformers.
Notebook | Description | |
---|---|---|
Fill-mask | How to use the pipeline function in transformers to fill in Japanese text. | |
Feature-extraction | How to use the pipeline function in transformers to extract features from Japanese text. | |
Embedding visualization | Show how to visualize embeddings from Japanese pre-trained models. | |
How to fine-tune a model on text classification | Show how to fine-tune a pretrained model on a Japanese text classification task. | |
How to fine-tune a model on text classification with csv files | Show how to preprocess the data and fine-tune a pretrained model on a Japanese text classification task. |