<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
finetuned-ConvNext-Indian-food
This model is a fine-tuned version of facebook/convnext-tiny-224 on the indian_food_images dataset. It achieves the following results on the evaluation set:
- Loss: 0.2977
- Accuracy: 0.9107
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3145 | 0.3 | 100 | 1.0460 | 0.8151 |
0.6694 | 0.6 | 200 | 0.5439 | 0.8757 |
0.5057 | 0.9 | 300 | 0.4398 | 0.8831 |
0.4381 | 1.2 | 400 | 0.4286 | 0.8820 |
0.4376 | 1.5 | 500 | 0.3400 | 0.9044 |
0.2499 | 1.8 | 600 | 0.3312 | 0.9065 |
0.2802 | 2.1 | 700 | 0.3338 | 0.9033 |
0.3014 | 2.4 | 800 | 0.3572 | 0.8948 |
0.2508 | 2.7 | 900 | 0.3432 | 0.9022 |
0.2012 | 3.0 | 1000 | 0.3060 | 0.9086 |
0.2634 | 3.3 | 1100 | 0.3451 | 0.9086 |
0.2483 | 3.6 | 1200 | 0.3550 | 0.9044 |
0.2273 | 3.9 | 1300 | 0.2977 | 0.9107 |
0.1214 | 4.2 | 1400 | 0.3265 | 0.9160 |
0.2048 | 4.5 | 1500 | 0.3126 | 0.9214 |
0.0997 | 4.8 | 1600 | 0.3164 | 0.9160 |
0.1145 | 5.11 | 1700 | 0.3055 | 0.9139 |
0.1578 | 5.41 | 1800 | 0.3195 | 0.9171 |
0.0615 | 5.71 | 1900 | 0.3401 | 0.9107 |
0.1537 | 6.01 | 2000 | 0.3428 | 0.9097 |
0.1278 | 6.31 | 2100 | 0.3058 | 0.9192 |
0.1274 | 6.61 | 2200 | 0.3189 | 0.9192 |
0.0877 | 6.91 | 2300 | 0.3370 | 0.9182 |
0.1058 | 7.21 | 2400 | 0.3225 | 0.9192 |
0.1742 | 7.51 | 2500 | 0.3341 | 0.9214 |
0.0949 | 7.81 | 2600 | 0.3126 | 0.9256 |
0.1732 | 8.11 | 2700 | 0.3078 | 0.9235 |
0.0894 | 8.41 | 2800 | 0.3098 | 0.9267 |
0.1257 | 8.71 | 2900 | 0.3030 | 0.9320 |
0.1747 | 9.01 | 3000 | 0.3106 | 0.9256 |
0.2119 | 9.31 | 3100 | 0.3037 | 0.9299 |
0.1074 | 9.61 | 3200 | 0.3049 | 0.9277 |
0.1275 | 9.91 | 3300 | 0.3046 | 0.9309 |
Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1