<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
stevhliu/my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1210
- Validation Loss: 0.2698
- Train Precision: 0.5099
- Train Recall: 0.3995
- Train F1: 0.4480
- Train Accuracy: 0.9444
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.3233 | 0.3099 | 0.4155 | 0.2117 | 0.2805 | 0.9333 | 0 |
0.1600 | 0.2743 | 0.5111 | 0.3589 | 0.4216 | 0.9416 | 1 |
0.1210 | 0.2698 | 0.5099 | 0.3995 | 0.4480 | 0.9444 | 2 |
Framework versions
- Transformers 4.22.2
- TensorFlow 2.8.2
- Datasets 2.5.1
- Tokenizers 0.12.1