<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
bert-base-uncased-bert-base-uncased-mc-weight1-epoch15
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 7.8027
- Cls loss: 3.4449
- Lm loss: 4.3556
- Cls Accuracy: 0.5706
- Cls F1: 0.5697
- Cls Precision: 0.5753
- Cls Recall: 0.5706
- Perplexity: 77.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity |
---|---|---|---|---|---|---|---|---|---|---|
6.9526 | 1.0 | 3470 | 6.3154 | 1.7748 | 4.5399 | 0.4991 | 0.4577 | 0.4421 | 0.4991 | 93.68 |
6.0876 | 2.0 | 6940 | 6.1427 | 1.6773 | 4.4643 | 0.5545 | 0.5342 | 0.5717 | 0.5545 | 86.86 |
5.7231 | 3.0 | 10410 | 6.0206 | 1.5955 | 4.4240 | 0.5902 | 0.5759 | 0.6020 | 0.5902 | 83.43 |
5.3877 | 4.0 | 13880 | 5.9857 | 1.5772 | 4.4073 | 0.6092 | 0.6031 | 0.6052 | 0.6092 | 82.05 |
5.1092 | 5.0 | 17350 | 6.3742 | 1.9981 | 4.3748 | 0.5942 | 0.5901 | 0.5964 | 0.5942 | 79.42 |
4.8504 | 6.0 | 20820 | 6.4511 | 2.0776 | 4.3737 | 0.5890 | 0.5875 | 0.6041 | 0.5890 | 79.34 |
4.6369 | 7.0 | 24290 | 6.9857 | 2.6268 | 4.3571 | 0.5827 | 0.5796 | 0.5979 | 0.5827 | 78.03 |
4.4667 | 8.0 | 27760 | 6.9550 | 2.6075 | 4.3458 | 0.5833 | 0.5831 | 0.5904 | 0.5833 | 77.16 |
4.3127 | 9.0 | 31230 | 7.2041 | 2.8518 | 4.3504 | 0.5902 | 0.5856 | 0.5935 | 0.5902 | 77.51 |
4.1777 | 10.0 | 34700 | 7.4233 | 3.0746 | 4.3467 | 0.5793 | 0.5770 | 0.5829 | 0.5793 | 77.22 |
4.0871 | 11.0 | 38170 | 7.4997 | 3.1488 | 4.3489 | 0.5746 | 0.5749 | 0.5853 | 0.5746 | 77.39 |
3.9991 | 12.0 | 41640 | 7.6636 | 3.3113 | 4.3502 | 0.5602 | 0.5605 | 0.5676 | 0.5602 | 77.49 |
3.9461 | 13.0 | 45110 | 7.6065 | 3.2514 | 4.3530 | 0.5695 | 0.5690 | 0.5738 | 0.5695 | 77.71 |
3.9013 | 14.0 | 48580 | 7.7562 | 3.4017 | 4.3523 | 0.5787 | 0.5785 | 0.5823 | 0.5787 | 77.65 |
3.8731 | 15.0 | 52050 | 7.8027 | 3.4449 | 4.3556 | 0.5706 | 0.5697 | 0.5753 | 0.5706 | 77.91 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1