<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
gpt2-gpt2-mc-weight0.25-epoch15
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.8155
- Cls loss: 3.4105
- Lm loss: 3.9623
- Cls Accuracy: 0.6104
- Cls F1: 0.6054
- Cls Precision: 0.6110
- Cls Recall: 0.6104
- Perplexity: 52.58
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity |
---|---|---|---|---|---|---|---|---|---|---|
4.6818 | 1.0 | 3470 | 4.4437 | 1.6250 | 4.0374 | 0.5274 | 0.4958 | 0.5329 | 0.5274 | 56.68 |
4.3828 | 2.0 | 6940 | 4.3628 | 1.4528 | 3.9994 | 0.6144 | 0.6088 | 0.6345 | 0.6144 | 54.56 |
4.2523 | 3.0 | 10410 | 4.3820 | 1.5899 | 3.9842 | 0.6092 | 0.6025 | 0.6382 | 0.6092 | 53.74 |
4.1442 | 4.0 | 13880 | 4.3954 | 1.6755 | 3.9763 | 0.6063 | 0.6010 | 0.6121 | 0.6063 | 53.32 |
4.0385 | 5.0 | 17350 | 4.4675 | 2.0051 | 3.9659 | 0.6150 | 0.6105 | 0.6194 | 0.6150 | 52.77 |
3.9513 | 6.0 | 20820 | 4.5223 | 2.2257 | 3.9654 | 0.6115 | 0.6049 | 0.6233 | 0.6115 | 52.74 |
3.8877 | 7.0 | 24290 | 4.5904 | 2.5003 | 3.9649 | 0.6012 | 0.5956 | 0.6049 | 0.6012 | 52.71 |
3.8367 | 8.0 | 27760 | 4.6320 | 2.6812 | 3.9612 | 0.6121 | 0.6061 | 0.6154 | 0.6121 | 52.52 |
3.7991 | 9.0 | 31230 | 4.6735 | 2.8534 | 3.9596 | 0.6104 | 0.6059 | 0.6139 | 0.6104 | 52.44 |
3.7697 | 10.0 | 34700 | 4.7126 | 3.0044 | 3.9610 | 0.6104 | 0.6063 | 0.6122 | 0.6104 | 52.51 |
3.7457 | 11.0 | 38170 | 4.7607 | 3.1961 | 3.9612 | 0.6133 | 0.6072 | 0.6182 | 0.6133 | 52.52 |
3.7265 | 12.0 | 41640 | 4.7927 | 3.3216 | 3.9617 | 0.6006 | 0.5951 | 0.6036 | 0.6006 | 52.55 |
3.7129 | 13.0 | 45110 | 4.7983 | 3.3431 | 3.9620 | 0.6104 | 0.6039 | 0.6133 | 0.6104 | 52.56 |
3.7016 | 14.0 | 48580 | 4.8061 | 3.3774 | 3.9612 | 0.6121 | 0.6059 | 0.6124 | 0.6121 | 52.52 |
3.6956 | 15.0 | 52050 | 4.8155 | 3.4105 | 3.9623 | 0.6104 | 0.6054 | 0.6110 | 0.6104 | 52.58 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1