generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8035 1.0 10 1.6086 {'precision': 0.007142857142857143, 'recall': 0.003708281829419036, 'f1': 0.004882017900732303, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.07957559681697612, 'recall': 0.028169014084507043, 'f1': 0.04160887656033287, 'number': 1065} 0.0414 0.0166 0.0237 0.3175
1.4936 2.0 20 1.2735 {'precision': 0.279126213592233, 'recall': 0.4264524103831891, 'f1': 0.3374083129584352, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4406651549508692, 'recall': 0.5474178403755868, 'f1': 0.48827470686767166, 'number': 1065} 0.3626 0.4656 0.4077 0.6074
1.1259 3.0 30 0.9718 {'precision': 0.47892074198988194, 'recall': 0.7021013597033374, 'f1': 0.569423558897243, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5904121110176619, 'recall': 0.6591549295774648, 'f1': 0.6228926353149955, 'number': 1065} 0.5336 0.6372 0.5808 0.6760
0.8568 4.0 40 0.8421 {'precision': 0.5595126522961574, 'recall': 0.7379480840543882, 'f1': 0.6364605543710021, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6669595782073814, 'recall': 0.7126760563380282, 'f1': 0.6890603722197005, 'number': 1065} 0.6059 0.6804 0.6410 0.7310
0.7275 5.0 50 0.7430 {'precision': 0.6401673640167364, 'recall': 0.7564894932014833, 'f1': 0.693484419263456, 'number': 809} {'precision': 0.12643678160919541, 'recall': 0.09243697478991597, 'f1': 0.10679611650485439, 'number': 119} {'precision': 0.6825, 'recall': 0.7690140845070422, 'f1': 0.7231788079470199, 'number': 1065} 0.6429 0.7235 0.6808 0.7727
0.6109 6.0 60 0.6965 {'precision': 0.6494736842105263, 'recall': 0.7626699629171817, 'f1': 0.7015349630471859, 'number': 809} {'precision': 0.125, 'recall': 0.09243697478991597, 'f1': 0.10628019323671498, 'number': 119} {'precision': 0.6780415430267063, 'recall': 0.8582159624413146, 'f1': 0.7575631993369251, 'number': 1065} 0.6463 0.7737 0.7043 0.7862
0.5341 7.0 70 0.6816 {'precision': 0.6745945945945946, 'recall': 0.7713226205191595, 'f1': 0.7197231833910035, 'number': 809} {'precision': 0.22727272727272727, 'recall': 0.21008403361344538, 'f1': 0.21834061135371177, 'number': 119} {'precision': 0.7435037720033529, 'recall': 0.8328638497652582, 'f1': 0.7856510186005314, 'number': 1065} 0.6894 0.7707 0.7278 0.7920
0.4811 8.0 80 0.6577 {'precision': 0.6800870511425462, 'recall': 0.7725587144622992, 'f1': 0.7233796296296297, 'number': 809} {'precision': 0.2072072072072072, 'recall': 0.19327731092436976, 'f1': 0.2, 'number': 119} {'precision': 0.7440132122213047, 'recall': 0.8460093896713615, 'f1': 0.7917398945518453, 'number': 1065} 0.6912 0.7772 0.7317 0.7986
0.4241 9.0 90 0.6586 {'precision': 0.6898454746136865, 'recall': 0.7725587144622992, 'f1': 0.7288629737609328, 'number': 809} {'precision': 0.2535211267605634, 'recall': 0.3025210084033613, 'f1': 0.2758620689655173, 'number': 119} {'precision': 0.751269035532995, 'recall': 0.8338028169014085, 'f1': 0.7903871829105474, 'number': 1065} 0.6946 0.7772 0.7336 0.7991
0.3784 10.0 100 0.6511 {'precision': 0.6879739978331527, 'recall': 0.7849196538936959, 'f1': 0.7332563510392609, 'number': 809} {'precision': 0.2833333333333333, 'recall': 0.2857142857142857, 'f1': 0.2845188284518828, 'number': 119} {'precision': 0.7590870667793744, 'recall': 0.8431924882629108, 'f1': 0.7989323843416369, 'number': 1065} 0.7040 0.7863 0.7428 0.8046
0.3425 11.0 110 0.6611 {'precision': 0.6975982532751092, 'recall': 0.7898640296662547, 'f1': 0.7408695652173912, 'number': 809} {'precision': 0.26865671641791045, 'recall': 0.3025210084033613, 'f1': 0.2845849802371542, 'number': 119} {'precision': 0.7737162750217581, 'recall': 0.8347417840375587, 'f1': 0.803071364046974, 'number': 1065} 0.7112 0.7847 0.7462 0.8116
0.3225 12.0 120 0.6676 {'precision': 0.6957470010905126, 'recall': 0.788627935723115, 'f1': 0.7392815758980301, 'number': 809} {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119} {'precision': 0.7806167400881058, 'recall': 0.831924882629108, 'f1': 0.8054545454545454, 'number': 1065} 0.7139 0.7837 0.7472 0.8081
0.302 13.0 130 0.6698 {'precision': 0.6956043956043956, 'recall': 0.7824474660074165, 'f1': 0.7364746945898778, 'number': 809} {'precision': 0.2878787878787879, 'recall': 0.31932773109243695, 'f1': 0.302788844621514, 'number': 119} {'precision': 0.7730434782608696, 'recall': 0.8347417840375587, 'f1': 0.8027088036117382, 'number': 1065} 0.7117 0.7827 0.7455 0.8133
0.2915 14.0 140 0.6845 {'precision': 0.6978260869565217, 'recall': 0.7935723114956736, 'f1': 0.742625795257374, 'number': 809} {'precision': 0.2857142857142857, 'recall': 0.31932773109243695, 'f1': 0.30158730158730157, 'number': 119} {'precision': 0.7771929824561403, 'recall': 0.831924882629108, 'f1': 0.8036281179138323, 'number': 1065} 0.7141 0.7858 0.7482 0.8052
0.2872 15.0 150 0.6843 {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809} {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119} {'precision': 0.7749562171628721, 'recall': 0.8309859154929577, 'f1': 0.8019936565473492, 'number': 1065} 0.7104 0.7827 0.7448 0.8076

Framework versions