generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

swin-tiny-patch4-window7-224-finetuned-woody_90epochs

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6659 1.0 58 0.6216 0.6558
0.6181 2.0 116 0.5616 0.7115
0.5941 3.0 174 0.5464 0.7224
0.5727 4.0 232 0.5368 0.7297
0.573 5.0 290 0.4971 0.7539
0.5724 6.0 348 0.4920 0.7467
0.5584 7.0 406 0.4949 0.7564
0.5352 8.0 464 0.5255 0.7406
0.5857 9.0 522 0.4954 0.7515
0.5352 10.0 580 0.4888 0.7455
0.5161 11.0 638 0.5306 0.7224
0.5457 12.0 696 0.4856 0.76
0.5309 13.0 754 0.4647 0.7612
0.5357 14.0 812 0.4688 0.7697
0.5183 15.0 870 0.4830 0.7527
0.4837 16.0 928 0.5238 0.7370
0.51 17.0 986 0.4658 0.7745
0.533 18.0 1044 0.4589 0.7673
0.4808 19.0 1102 0.4375 0.7794
0.4854 20.0 1160 0.4574 0.7745
0.4708 21.0 1218 0.4738 0.7709
0.4801 22.0 1276 0.4688 0.76
0.4751 23.0 1334 0.4610 0.7648
0.497 24.0 1392 0.5058 0.7624
0.4767 25.0 1450 0.4709 0.7721
0.4805 26.0 1508 0.4447 0.7697
0.4557 27.0 1566 0.4558 0.7721
0.4636 28.0 1624 0.4325 0.8036
0.4285 29.0 1682 0.4526 0.7794
0.4358 30.0 1740 0.4302 0.8048
0.4257 31.0 1798 0.4373 0.7927
0.4137 32.0 1856 0.4458 0.7903
0.4389 33.0 1914 0.4522 0.7988
0.4537 34.0 1972 0.4395 0.7927
0.4249 35.0 2030 0.4348 0.8
0.4244 36.0 2088 0.4650 0.7867
0.4256 37.0 2146 0.4402 0.8012
0.4118 38.0 2204 0.4394 0.7867
0.4128 39.0 2262 0.4225 0.8133
0.416 40.0 2320 0.4410 0.8073
0.4211 41.0 2378 0.4464 0.8024
0.3838 42.0 2436 0.4440 0.7976
0.374 43.0 2494 0.4175 0.7903
0.412 44.0 2552 0.4169 0.8109
0.3746 45.0 2610 0.4243 0.8012
0.3719 46.0 2668 0.4132 0.8242
0.381 47.0 2726 0.4485 0.7988
0.3708 48.0 2784 0.4200 0.8085
0.3591 49.0 2842 0.4071 0.8279
0.3762 50.0 2900 0.4428 0.8145
0.3426 51.0 2958 0.4058 0.8158
0.3541 52.0 3016 0.4470 0.8182
0.3373 53.0 3074 0.4252 0.8194
0.3303 54.0 3132 0.4040 0.8315
0.3275 55.0 3190 0.4235 0.8291
0.3151 56.0 3248 0.3984 0.8485
0.324 57.0 3306 0.4283 0.8291
0.3276 58.0 3364 0.4731 0.8145
0.3208 59.0 3422 0.4360 0.8255
0.3355 60.0 3480 0.4143 0.8230
0.3154 61.0 3538 0.4234 0.8267
0.3451 62.0 3596 0.4059 0.8242
0.3071 63.0 3654 0.3991 0.8267
0.3303 64.0 3712 0.4099 0.8242
0.29 65.0 3770 0.4140 0.8327
0.2937 66.0 3828 0.4590 0.8218
0.3322 67.0 3886 0.4111 0.8327
0.3219 68.0 3944 0.4299 0.8327
0.2839 69.0 4002 0.4074 0.8424
0.2903 70.0 4060 0.4366 0.8315
0.2851 71.0 4118 0.4132 0.8473
0.3029 72.0 4176 0.4239 0.8473
0.2693 73.0 4234 0.4194 0.8412
0.2715 74.0 4292 0.4384 0.8412
0.2842 75.0 4350 0.4279 0.8448
0.2733 76.0 4408 0.4174 0.84
0.2694 77.0 4466 0.3966 0.8388
0.2527 78.0 4524 0.4194 0.8364
0.2813 79.0 4582 0.4231 0.8436
0.2618 80.0 4640 0.4494 0.8352
0.2639 81.0 4698 0.4152 0.8388
0.2643 82.0 4756 0.4241 0.8448
0.276 83.0 4814 0.4518 0.8327
0.2761 84.0 4872 0.4349 0.8412
0.2295 85.0 4930 0.4504 0.8315
0.2723 86.0 4988 0.4385 0.8388
0.2559 87.0 5046 0.4362 0.8473
0.2583 88.0 5104 0.4273 0.8436
0.2523 89.0 5162 0.4292 0.8424
0.2563 90.0 5220 0.4351 0.8424

Framework versions