<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
Sinergy-Question-Answering
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.5867
- Precision: 0.7949
- Recall: 0.7949
- F1: 0.7949
- Accuracy: 0.9261
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 4.55 | 100 | 0.3686 | 0.5748 | 0.7179 | 0.6384 | 0.8881 |
No log | 9.09 | 200 | 0.3057 | 0.6799 | 0.7546 | 0.7153 | 0.9189 |
No log | 13.64 | 300 | 0.3287 | 0.7491 | 0.7875 | 0.7679 | 0.9354 |
No log | 18.18 | 400 | 0.3452 | 0.7414 | 0.7875 | 0.7638 | 0.9307 |
0.2603 | 22.73 | 500 | 0.3365 | 0.7313 | 0.7875 | 0.7584 | 0.9415 |
0.2603 | 27.27 | 600 | 0.5244 | 0.7745 | 0.7802 | 0.7774 | 0.9097 |
0.2603 | 31.82 | 700 | 0.4429 | 0.7737 | 0.7766 | 0.7751 | 0.9338 |
0.2603 | 36.36 | 800 | 0.4776 | 0.7657 | 0.8022 | 0.7835 | 0.9266 |
0.2603 | 40.91 | 900 | 0.5305 | 0.7855 | 0.7912 | 0.7883 | 0.9236 |
0.051 | 45.45 | 1000 | 0.5867 | 0.7949 | 0.7949 | 0.7949 | 0.9261 |
0.051 | 50.0 | 1100 | 0.5569 | 0.7774 | 0.7802 | 0.7788 | 0.9323 |
0.051 | 54.55 | 1200 | 0.6154 | 0.7509 | 0.7509 | 0.7509 | 0.9200 |
0.051 | 59.09 | 1300 | 0.5406 | 0.7305 | 0.7546 | 0.7423 | 0.9297 |
0.051 | 63.64 | 1400 | 0.6069 | 0.7544 | 0.7875 | 0.7706 | 0.9287 |
0.0127 | 68.18 | 1500 | 0.6142 | 0.7603 | 0.7436 | 0.7519 | 0.9210 |
0.0127 | 72.73 | 1600 | 0.5822 | 0.7399 | 0.7399 | 0.7399 | 0.9297 |
0.0127 | 77.27 | 1700 | 0.5584 | 0.75 | 0.7582 | 0.7541 | 0.9297 |
0.0127 | 81.82 | 1800 | 0.5962 | 0.7509 | 0.7729 | 0.7617 | 0.9241 |
0.0127 | 86.36 | 1900 | 0.6891 | 0.7580 | 0.7802 | 0.7690 | 0.9236 |
0.0013 | 90.91 | 2000 | 0.6205 | 0.75 | 0.7582 | 0.7541 | 0.9266 |
0.0013 | 95.45 | 2100 | 0.6235 | 0.7745 | 0.7802 | 0.7774 | 0.9292 |
0.0013 | 100.0 | 2200 | 0.6329 | 0.7656 | 0.7656 | 0.7656 | 0.9292 |
0.0013 | 104.55 | 2300 | 0.6482 | 0.7739 | 0.7399 | 0.7566 | 0.9241 |
0.0013 | 109.09 | 2400 | 0.6440 | 0.7675 | 0.7619 | 0.7647 | 0.9292 |
0.0008 | 113.64 | 2500 | 0.6388 | 0.7630 | 0.7546 | 0.7587 | 0.9343 |
0.0008 | 118.18 | 2600 | 0.7076 | 0.7774 | 0.7546 | 0.7658 | 0.9225 |
0.0008 | 122.73 | 2700 | 0.6698 | 0.7721 | 0.7692 | 0.7706 | 0.9297 |
0.0008 | 127.27 | 2800 | 0.6898 | 0.76 | 0.7656 | 0.7628 | 0.9220 |
0.0008 | 131.82 | 2900 | 0.6800 | 0.7482 | 0.7619 | 0.7550 | 0.9282 |
0.0006 | 136.36 | 3000 | 0.6911 | 0.7393 | 0.7582 | 0.7486 | 0.9215 |
0.0006 | 140.91 | 3100 | 0.6818 | 0.7446 | 0.7582 | 0.7514 | 0.9220 |
0.0006 | 145.45 | 3200 | 0.7043 | 0.7473 | 0.7692 | 0.7581 | 0.9210 |
0.0006 | 150.0 | 3300 | 0.6935 | 0.7482 | 0.7729 | 0.7604 | 0.9246 |
0.0006 | 154.55 | 3400 | 0.7163 | 0.7482 | 0.7729 | 0.7604 | 0.9230 |
0.0001 | 159.09 | 3500 | 0.7329 | 0.7590 | 0.7729 | 0.7659 | 0.9205 |
0.0001 | 163.64 | 3600 | 0.7570 | 0.7737 | 0.7766 | 0.7751 | 0.9215 |
0.0001 | 168.18 | 3700 | 0.7552 | 0.7664 | 0.7692 | 0.7678 | 0.9225 |
0.0001 | 172.73 | 3800 | 0.7226 | 0.7831 | 0.7802 | 0.7817 | 0.9246 |
0.0001 | 177.27 | 3900 | 0.6868 | 0.7844 | 0.7729 | 0.7786 | 0.9297 |
0.0003 | 181.82 | 4000 | 0.6916 | 0.7757 | 0.7729 | 0.7743 | 0.9256 |
0.0003 | 186.36 | 4100 | 0.6862 | 0.7749 | 0.7692 | 0.7721 | 0.9292 |
0.0003 | 190.91 | 4200 | 0.7067 | 0.7749 | 0.7692 | 0.7721 | 0.9225 |
0.0003 | 195.45 | 4300 | 0.7059 | 0.7628 | 0.7656 | 0.7642 | 0.9210 |
0.0003 | 200.0 | 4400 | 0.7300 | 0.7609 | 0.7692 | 0.7650 | 0.9210 |
0.0002 | 204.55 | 4500 | 0.7299 | 0.7572 | 0.7656 | 0.7614 | 0.9215 |
0.0002 | 209.09 | 4600 | 0.7168 | 0.7527 | 0.7692 | 0.7609 | 0.9210 |
0.0002 | 213.64 | 4700 | 0.7177 | 0.7545 | 0.7656 | 0.76 | 0.9210 |
0.0002 | 218.18 | 4800 | 0.7182 | 0.7545 | 0.7656 | 0.76 | 0.9210 |
0.0002 | 222.73 | 4900 | 0.7190 | 0.7628 | 0.7656 | 0.7642 | 0.9205 |
0.0001 | 227.27 | 5000 | 0.7168 | 0.7572 | 0.7656 | 0.7614 | 0.9215 |
Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.2.2
- Tokenizers 0.13.1