generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

distilbert-base-uncased_finetuned_SPEECH_TEXT_CH_2_DISPLAY

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.0362 1.0 19 0.9281 0.5789 0.4964
0.9725 2.0 38 0.8906 0.6316 0.5707
0.8712 3.0 57 0.8080 0.6316 0.5889
0.6402 4.0 76 0.6386 0.7895 0.7474
0.4453 5.0 95 0.5401 0.7895 0.7485
0.2658 6.0 114 0.4999 0.8421 0.7990
0.1695 7.0 133 0.6248 0.7895 0.7427
0.0822 8.0 152 0.7391 0.7368 0.7114
0.0303 9.0 171 0.6665 0.7895 0.7485
0.016 10.0 190 0.8217 0.7368 0.7114
0.0103 11.0 209 0.8090 0.7368 0.7114
0.0083 12.0 228 0.8646 0.7368 0.7114
0.0068 13.0 247 0.9091 0.7368 0.7114
0.0059 14.0 266 0.8731 0.7368 0.7114
0.0049 15.0 285 0.9512 0.7368 0.7114
0.0048 16.0 304 0.9376 0.7368 0.7114
0.004 17.0 323 0.9507 0.7368 0.7114
0.0037 18.0 342 0.9868 0.7368 0.7114
0.0033 19.0 361 0.9862 0.7368 0.7114
0.0029 20.0 380 0.9733 0.7368 0.7114
0.0029 21.0 399 0.9747 0.7368 0.7114
0.0027 22.0 418 0.9998 0.7368 0.7114
0.0024 23.0 437 0.9984 0.7368 0.7114
0.0024 24.0 456 1.0270 0.7368 0.7114
0.0024 25.0 475 1.0083 0.7368 0.7114
0.0022 26.0 494 1.0167 0.7368 0.7114
0.0021 27.0 513 1.0273 0.7368 0.7114
0.002 28.0 532 1.0340 0.7368 0.7114
0.0021 29.0 551 1.0282 0.7368 0.7114
0.002 30.0 570 1.0372 0.7368 0.7114
0.0019 31.0 589 1.0593 0.7368 0.7114
0.0017 32.0 608 1.0841 0.7368 0.7114
0.0018 33.0 627 1.0920 0.7368 0.7114
0.0019 34.0 646 1.0943 0.7368 0.7114
0.0018 35.0 665 1.0883 0.7368 0.7114
0.0017 36.0 684 1.0864 0.7368 0.7114
0.0016 37.0 703 1.0890 0.7368 0.7114
0.0017 38.0 722 1.0894 0.7368 0.7114
0.0015 39.0 741 1.0867 0.7368 0.7114
0.0016 40.0 760 1.0863 0.7368 0.7114

Framework versions