<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
DatasetSinergyRhenus
This model is a fine-tuned version of microsoft/layoutlmv3-large on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.2981
- Precision: 0.8851
- Recall: 0.8763
- F1: 0.8807
- Accuracy: 0.9709
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.19 | 100 | 0.3083 | 0.6238 | 0.7709 | 0.6896 | 0.8937 |
No log | 2.38 | 200 | 0.1983 | 0.7691 | 0.8244 | 0.7958 | 0.9281 |
No log | 3.57 | 300 | 0.2468 | 0.7690 | 0.8462 | 0.8057 | 0.9213 |
No log | 4.76 | 400 | 0.1565 | 0.8412 | 0.8595 | 0.8503 | 0.9614 |
0.2937 | 5.95 | 500 | 0.1671 | 0.8238 | 0.8445 | 0.8340 | 0.9577 |
0.2937 | 7.14 | 600 | 0.1665 | 0.8440 | 0.8595 | 0.8517 | 0.9594 |
0.2937 | 8.33 | 700 | 0.1679 | 0.8571 | 0.8528 | 0.8550 | 0.9628 |
0.2937 | 9.52 | 800 | 0.1669 | 0.8656 | 0.8512 | 0.8583 | 0.9611 |
0.2937 | 10.71 | 900 | 0.1579 | 0.8765 | 0.8662 | 0.8713 | 0.9680 |
0.1075 | 11.9 | 1000 | 0.1883 | 0.8656 | 0.8512 | 0.8583 | 0.9633 |
0.1075 | 13.1 | 1100 | 0.1873 | 0.8765 | 0.8662 | 0.8713 | 0.9592 |
0.1075 | 14.29 | 1200 | 0.1725 | 0.8524 | 0.8595 | 0.8560 | 0.9668 |
0.1075 | 15.48 | 1300 | 0.1690 | 0.8679 | 0.8679 | 0.8679 | 0.9650 |
0.1075 | 16.67 | 1400 | 0.1959 | 0.8825 | 0.8662 | 0.8743 | 0.9668 |
0.0637 | 17.86 | 1500 | 0.1919 | 0.8723 | 0.8679 | 0.8701 | 0.9638 |
0.0637 | 19.05 | 1600 | 0.2020 | 0.8780 | 0.8662 | 0.8721 | 0.9663 |
0.0637 | 20.24 | 1700 | 0.2093 | 0.8716 | 0.8512 | 0.8613 | 0.9641 |
0.0637 | 21.43 | 1800 | 0.2184 | 0.8716 | 0.8629 | 0.8672 | 0.9643 |
0.0637 | 22.62 | 1900 | 0.2204 | 0.8576 | 0.8562 | 0.8569 | 0.9631 |
0.0452 | 23.81 | 2000 | 0.2478 | 0.8591 | 0.8562 | 0.8576 | 0.9621 |
0.0452 | 25.0 | 2100 | 0.2506 | 0.8769 | 0.8579 | 0.8673 | 0.9665 |
0.0452 | 26.19 | 2200 | 0.2270 | 0.8862 | 0.8729 | 0.8795 | 0.9690 |
0.0452 | 27.38 | 2300 | 0.2544 | 0.8790 | 0.8629 | 0.8709 | 0.9646 |
0.0452 | 28.57 | 2400 | 0.2251 | 0.8735 | 0.8662 | 0.8699 | 0.9643 |
0.0313 | 29.76 | 2500 | 0.2597 | 0.8668 | 0.8595 | 0.8631 | 0.9633 |
0.0313 | 30.95 | 2600 | 0.2635 | 0.8670 | 0.8612 | 0.8641 | 0.9643 |
0.0313 | 32.14 | 2700 | 0.2493 | 0.8752 | 0.8679 | 0.8715 | 0.9665 |
0.0313 | 33.33 | 2800 | 0.2565 | 0.8797 | 0.8679 | 0.8737 | 0.9660 |
0.0313 | 34.52 | 2900 | 0.2626 | 0.8831 | 0.8712 | 0.8771 | 0.9672 |
0.0218 | 35.71 | 3000 | 0.2750 | 0.8639 | 0.8595 | 0.8617 | 0.9650 |
0.0218 | 36.9 | 3100 | 0.2683 | 0.8682 | 0.8595 | 0.8639 | 0.9660 |
0.0218 | 38.1 | 3200 | 0.2751 | 0.8724 | 0.8579 | 0.8651 | 0.9660 |
0.0218 | 39.29 | 3300 | 0.2851 | 0.8746 | 0.8629 | 0.8687 | 0.9655 |
0.0218 | 40.48 | 3400 | 0.2737 | 0.8805 | 0.8629 | 0.8716 | 0.9692 |
0.0111 | 41.67 | 3500 | 0.2638 | 0.8773 | 0.8729 | 0.8751 | 0.9699 |
0.0111 | 42.86 | 3600 | 0.2773 | 0.8879 | 0.8746 | 0.8812 | 0.9692 |
0.0111 | 44.05 | 3700 | 0.2829 | 0.8759 | 0.8612 | 0.8685 | 0.9653 |
0.0111 | 45.24 | 3800 | 0.2730 | 0.8739 | 0.8696 | 0.8718 | 0.9699 |
0.0111 | 46.43 | 3900 | 0.2873 | 0.8767 | 0.8679 | 0.8723 | 0.9687 |
0.0039 | 47.62 | 4000 | 0.2797 | 0.8788 | 0.8729 | 0.8758 | 0.9690 |
0.0039 | 48.81 | 4100 | 0.2769 | 0.8805 | 0.8746 | 0.8775 | 0.9707 |
0.0039 | 50.0 | 4200 | 0.2842 | 0.8818 | 0.8612 | 0.8714 | 0.9694 |
0.0039 | 51.19 | 4300 | 0.2837 | 0.8822 | 0.8763 | 0.8792 | 0.9712 |
0.0039 | 52.38 | 4400 | 0.2895 | 0.8767 | 0.8679 | 0.8723 | 0.9704 |
0.0022 | 53.57 | 4500 | 0.2901 | 0.8822 | 0.8763 | 0.8792 | 0.9712 |
0.0022 | 54.76 | 4600 | 0.2950 | 0.8851 | 0.8763 | 0.8807 | 0.9709 |
0.0022 | 55.95 | 4700 | 0.2977 | 0.8851 | 0.8763 | 0.8807 | 0.9709 |
0.0022 | 57.14 | 4800 | 0.2984 | 0.8851 | 0.8763 | 0.8807 | 0.9709 |
0.0022 | 58.33 | 4900 | 0.2983 | 0.8851 | 0.8763 | 0.8807 | 0.9709 |
0.0013 | 59.52 | 5000 | 0.2981 | 0.8851 | 0.8763 | 0.8807 | 0.9709 |
Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.2.2
- Tokenizers 0.13.1