bart-base-japanese
This model is converted from the original Japanese BART Pretrained model released by Kyoto University.
Both the encoder and decoder outputs are identical to the original Fairseq model.
How to use the model
The input text should be tokenized by BartJapaneseTokenizer.
Tokenizer requirements:
Simple FillMaskPipeline
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
model_name = "Formzu/bart-base-japanese"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
masked_text = "天気が<mask>から散歩しましょう。"
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
out = fill_mask(masked_text)
print(out)
# [{'score': 0.19255658984184265, 'token': 1718, 'token_str': 'よく', 'sequence': '天気 が よく から 散歩 し ましょう 。'},
# {'score': 0.14426815509796143, 'token': 5478, 'token_str': '良く', 'sequence': '天気 が 良く から 散歩 し ましょう 。'},
# {'score': 0.05554169788956642, 'token': 6561, 'token_str': '悪い', 'sequence': '天気 が 悪い から 散歩 し ましょう 。'},
# {'score': 0.05524599179625511, 'token': 3553, 'token_str': '良い', 'sequence': '天気 が 良い から 散歩 し ましょう 。'},
# {'score': 0.03720080852508545, 'token': 1370, 'token_str': '良', 'sequence': '天気 が 良 から 散歩 し ましょう 。'}]
Text Generation
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_name = "Formzu/bart-base-japanese"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
masked_text = "天気が<mask>から散歩しましょう。"
inp = tokenizer(masked_text, return_tensors='pt').to(device)
out = model.generate(**inp, num_beams=1, min_length=0, max_length=20, early_stopping=True, no_repeat_ngram_size=2)
res = "".join(tokenizer.decode(out.squeeze(0).tolist(), skip_special_tokens=True).split(" "))
print(res)
# 天気がよくなってから散歩しましょう。天気のよく合っているところにいる
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Tokenizers 0.12.1