<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
SST2_ALBERT_5E
This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5698
- Accuracy: 0.8933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5574 | 0.12 | 50 | 0.4424 | 0.8 |
0.4078 | 0.23 | 100 | 0.3995 | 0.8533 |
0.3594 | 0.35 | 150 | 0.3805 | 0.8533 |
0.2952 | 0.46 | 200 | 0.3388 | 0.8933 |
0.3157 | 0.58 | 250 | 0.3629 | 0.8733 |
0.2623 | 0.69 | 300 | 0.5120 | 0.8667 |
0.261 | 0.81 | 350 | 0.2851 | 0.8867 |
0.3071 | 0.92 | 400 | 0.2754 | 0.8733 |
0.2905 | 1.04 | 450 | 0.3013 | 0.8867 |
0.2114 | 1.15 | 500 | 0.3205 | 0.9 |
0.2537 | 1.27 | 550 | 0.4157 | 0.8867 |
0.2106 | 1.39 | 600 | 0.5170 | 0.86 |
0.2227 | 1.5 | 650 | 0.3422 | 0.9 |
0.2304 | 1.62 | 700 | 0.5696 | 0.8533 |
0.2661 | 1.73 | 750 | 0.2975 | 0.9133 |
0.235 | 1.85 | 800 | 0.2692 | 0.92 |
0.2182 | 1.96 | 850 | 0.3247 | 0.9067 |
0.1762 | 2.08 | 900 | 0.3693 | 0.9133 |
0.2086 | 2.19 | 950 | 0.4465 | 0.8933 |
0.1444 | 2.31 | 1000 | 0.4225 | 0.9 |
0.2228 | 2.42 | 1050 | 0.3794 | 0.9067 |
0.1634 | 2.54 | 1100 | 0.4783 | 0.8933 |
0.1561 | 2.66 | 1150 | 0.3476 | 0.9267 |
0.1286 | 2.77 | 1200 | 0.5080 | 0.8933 |
0.1647 | 2.89 | 1250 | 0.4369 | 0.9067 |
0.1059 | 3.0 | 1300 | 0.4132 | 0.9133 |
0.1069 | 3.12 | 1350 | 0.6070 | 0.8733 |
0.108 | 3.23 | 1400 | 0.4909 | 0.9 |
0.0741 | 3.35 | 1450 | 0.5231 | 0.9 |
0.1204 | 3.46 | 1500 | 0.4517 | 0.9067 |
0.106 | 3.58 | 1550 | 0.4685 | 0.8933 |
0.1375 | 3.7 | 1600 | 0.4597 | 0.9067 |
0.0727 | 3.81 | 1650 | 0.4443 | 0.9 |
0.0669 | 3.93 | 1700 | 0.4324 | 0.9067 |
0.081 | 4.04 | 1750 | 0.4176 | 0.9133 |
0.0462 | 4.16 | 1800 | 0.4626 | 0.9133 |
0.0382 | 4.27 | 1850 | 0.4732 | 0.9067 |
0.0948 | 4.39 | 1900 | 0.5471 | 0.9 |
0.0667 | 4.5 | 1950 | 0.5581 | 0.8867 |
0.0878 | 4.62 | 2000 | 0.5429 | 0.8933 |
0.0651 | 4.73 | 2050 | 0.5852 | 0.8933 |
0.0492 | 4.85 | 2100 | 0.5793 | 0.8933 |
0.0496 | 4.97 | 2150 | 0.5698 | 0.8933 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1