generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

borges-gpt-collab

This model is a fine-tuned version of DeepESP/gpt2-spanish on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss
11.2135 0.96 7 10.2022
10.3195 1.96 14 9.6343
9.9127 2.96 21 9.4637
9.7295 3.96 28 9.2993
9.527 4.96 35 9.0962
9.2648 5.96 42 8.8294
8.9309 6.96 49 8.5103
8.5639 7.96 56 8.1858
8.2034 8.96 63 7.8816
7.8665 9.96 70 7.6303
7.5715 10.96 77 7.4307
7.3259 11.96 84 7.2632
7.136 12.96 91 7.1494
6.9558 13.96 98 7.0957
6.8068 14.96 105 7.0199
6.6656 15.96 112 6.9554
6.5264 16.96 119 6.9324
6.3843 17.96 126 6.8940
6.2204 18.96 133 6.8799
6.0915 19.96 140 6.8788
5.9532 20.96 147 6.8719
5.8169 21.96 154 6.8647
5.6531 22.96 161 6.8865
5.5125 23.96 168 6.8940
5.3666 24.96 175 6.9248
5.2377 25.96 182 6.9421
5.1115 26.96 189 6.9631
4.9639 27.96 196 7.0135
4.824 28.96 203 7.0352
4.6886 29.96 210 7.0729
4.5538 30.96 217 7.1385
4.4126 31.96 224 7.1561
4.2486 32.96 231 7.1792
4.0955 33.96 238 7.2767
3.9333 34.96 245 7.2815
3.7914 35.96 252 7.3463
3.618 36.96 259 7.3864
3.4453 37.96 266 7.4394
3.2795 38.96 273 7.4730
3.0994 39.96 280 7.4880
2.9143 40.96 287 7.5567
2.741 41.96 294 7.5451
2.5698 42.96 301 7.5966
2.3855 43.96 308 7.6898
2.2059 44.96 315 7.6957
2.0634 45.96 322 7.7503
1.8719 46.96 329 7.8369
1.7059 47.96 336 7.8411
1.54 48.96 343 7.8316
1.3768 49.96 350 7.8630
1.2177 50.96 357 7.9360
1.0663 51.96 364 7.9886
0.9569 52.96 371 8.0187
0.8281 53.96 378 8.0274
0.7074 54.96 385 8.1010
0.6095 55.96 392 8.1594
0.5262 56.96 399 8.1010
0.4678 57.96 406 8.1440
0.4105 58.96 413 8.1638
0.3766 59.96 420 8.1534
0.3425 60.96 427 8.1980
0.321 61.96 434 8.2184
0.3061 62.96 441 8.2499
0.2852 63.96 448 8.1690
0.2698 64.96 455 8.2160
0.2628 65.96 462 8.2616
0.2619 66.96 469 8.2948
0.2544 67.96 476 8.3553
0.2414 68.96 483 8.3712
0.2177 69.96 490 8.3468

Framework versions