<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
TSE_ALBERT_5E
This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3667
- Accuracy: 0.9333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5712 | 0.06 | 50 | 0.4047 | 0.82 |
0.3198 | 0.12 | 100 | 0.2883 | 0.9 |
0.3254 | 0.17 | 150 | 0.4352 | 0.84 |
0.2898 | 0.23 | 200 | 0.2892 | 0.9133 |
0.2826 | 0.29 | 250 | 0.3565 | 0.8867 |
0.2696 | 0.35 | 300 | 0.2263 | 0.9333 |
0.274 | 0.4 | 350 | 0.2068 | 0.94 |
0.2393 | 0.46 | 400 | 0.2270 | 0.9333 |
0.2067 | 0.52 | 450 | 0.2118 | 0.9333 |
0.2332 | 0.58 | 500 | 0.4454 | 0.88 |
0.3099 | 0.63 | 550 | 0.2777 | 0.9067 |
0.2687 | 0.69 | 600 | 0.2077 | 0.9333 |
0.2053 | 0.75 | 650 | 0.1923 | 0.9533 |
0.2359 | 0.81 | 700 | 0.3891 | 0.9067 |
0.2492 | 0.87 | 750 | 0.2765 | 0.9333 |
0.2589 | 0.92 | 800 | 0.1879 | 0.9467 |
0.2161 | 0.98 | 850 | 0.2733 | 0.9267 |
0.1752 | 1.04 | 900 | 0.3108 | 0.92 |
0.2213 | 1.1 | 950 | 0.3318 | 0.92 |
0.1665 | 1.15 | 1000 | 0.4124 | 0.8933 |
0.1832 | 1.21 | 1050 | 0.3448 | 0.92 |
0.1671 | 1.27 | 1100 | 0.3343 | 0.9067 |
0.184 | 1.33 | 1150 | 0.3929 | 0.9067 |
0.2788 | 1.38 | 1200 | 0.3888 | 0.8933 |
0.1768 | 1.44 | 1250 | 0.4028 | 0.9 |
0.2368 | 1.5 | 1300 | 0.3154 | 0.9133 |
0.2055 | 1.56 | 1350 | 0.2603 | 0.9267 |
0.1693 | 1.61 | 1400 | 0.2994 | 0.9267 |
0.1447 | 1.67 | 1450 | 0.3247 | 0.9267 |
0.226 | 1.73 | 1500 | 0.3410 | 0.9267 |
0.1744 | 1.79 | 1550 | 0.3105 | 0.9267 |
0.1943 | 1.85 | 1600 | 0.2760 | 0.94 |
0.2093 | 1.9 | 1650 | 0.2087 | 0.9467 |
0.2027 | 1.96 | 1700 | 0.2773 | 0.9333 |
0.1806 | 2.02 | 1750 | 0.3386 | 0.9267 |
0.1161 | 2.08 | 1800 | 0.4301 | 0.9067 |
0.0916 | 2.13 | 1850 | 0.3693 | 0.92 |
0.1586 | 2.19 | 1900 | 0.2929 | 0.94 |
0.1336 | 2.25 | 1950 | 0.4015 | 0.9133 |
0.1746 | 2.31 | 2000 | 0.3027 | 0.92 |
0.1353 | 2.36 | 2050 | 0.3224 | 0.9267 |
0.116 | 2.42 | 2100 | 0.3609 | 0.9267 |
0.1807 | 2.48 | 2150 | 0.3044 | 0.9267 |
0.1016 | 2.54 | 2200 | 0.3706 | 0.9133 |
0.0634 | 2.6 | 2250 | 0.3391 | 0.92 |
0.167 | 2.65 | 2300 | 0.3463 | 0.92 |
0.1718 | 2.71 | 2350 | 0.3254 | 0.92 |
0.1269 | 2.77 | 2400 | 0.2640 | 0.9333 |
0.1848 | 2.83 | 2450 | 0.2660 | 0.9267 |
0.116 | 2.88 | 2500 | 0.2532 | 0.94 |
0.1804 | 2.94 | 2550 | 0.3538 | 0.92 |
0.1315 | 3.0 | 2600 | 0.4146 | 0.9067 |
0.1024 | 3.06 | 2650 | 0.2899 | 0.9333 |
0.0904 | 3.11 | 2700 | 0.3191 | 0.9333 |
0.0596 | 3.17 | 2750 | 0.3569 | 0.9333 |
0.1144 | 3.23 | 2800 | 0.3373 | 0.9267 |
0.0782 | 3.29 | 2850 | 0.3447 | 0.9267 |
0.064 | 3.34 | 2900 | 0.2932 | 0.94 |
0.118 | 3.4 | 2950 | 0.3099 | 0.94 |
0.1286 | 3.46 | 3000 | 0.3404 | 0.9267 |
0.0963 | 3.52 | 3050 | 0.4026 | 0.9067 |
0.1158 | 3.58 | 3100 | 0.3320 | 0.9267 |
0.0967 | 3.63 | 3150 | 0.2984 | 0.94 |
0.1122 | 3.69 | 3200 | 0.3149 | 0.9333 |
0.134 | 3.75 | 3250 | 0.3804 | 0.9133 |
0.0953 | 3.81 | 3300 | 0.3670 | 0.92 |
0.0776 | 3.86 | 3350 | 0.4140 | 0.92 |
0.0813 | 3.92 | 3400 | 0.3654 | 0.9333 |
0.0406 | 3.98 | 3450 | 0.4364 | 0.92 |
0.0538 | 4.04 | 3500 | 0.3553 | 0.94 |
0.0734 | 4.09 | 3550 | 0.3814 | 0.9267 |
0.0396 | 4.15 | 3600 | 0.3978 | 0.9267 |
0.0427 | 4.21 | 3650 | 0.4333 | 0.92 |
0.1472 | 4.27 | 3700 | 0.3816 | 0.92 |
0.0587 | 4.33 | 3750 | 0.3624 | 0.92 |
0.0549 | 4.38 | 3800 | 0.3461 | 0.9333 |
0.0606 | 4.44 | 3850 | 0.3562 | 0.94 |
0.0483 | 4.5 | 3900 | 0.3655 | 0.9333 |
0.0351 | 4.56 | 3950 | 0.3613 | 0.9333 |
0.0763 | 4.61 | 4000 | 0.3641 | 0.94 |
0.0835 | 4.67 | 4050 | 0.3669 | 0.9333 |
0.0542 | 4.73 | 4100 | 0.3569 | 0.9333 |
0.0804 | 4.79 | 4150 | 0.3575 | 0.9333 |
0.0336 | 4.84 | 4200 | 0.3655 | 0.9333 |
0.0631 | 4.9 | 4250 | 0.3646 | 0.9333 |
0.0183 | 4.96 | 4300 | 0.3667 | 0.9333 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.3.2
- Tokenizers 0.13.1