<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
TSE_ELECTRA_5E
This model is a fine-tuned version of google/electra-base-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2968
- Accuracy: 0.9467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6837 | 0.06 | 50 | 0.6580 | 0.66 |
0.5671 | 0.12 | 100 | 0.3974 | 0.8867 |
0.368 | 0.17 | 150 | 0.2619 | 0.9067 |
0.2929 | 0.23 | 200 | 0.2179 | 0.94 |
0.2153 | 0.29 | 250 | 0.2200 | 0.94 |
0.2425 | 0.35 | 300 | 0.1980 | 0.9467 |
0.2281 | 0.4 | 350 | 0.1768 | 0.9533 |
0.2096 | 0.46 | 400 | 0.2532 | 0.9267 |
0.2027 | 0.52 | 450 | 0.2018 | 0.9467 |
0.25 | 0.58 | 500 | 0.1939 | 0.9467 |
0.2217 | 0.63 | 550 | 0.2267 | 0.9267 |
0.2315 | 0.69 | 600 | 0.2039 | 0.9467 |
0.2273 | 0.75 | 650 | 0.1950 | 0.9533 |
0.1677 | 0.81 | 700 | 0.2274 | 0.94 |
0.198 | 0.87 | 750 | 0.2063 | 0.94 |
0.1944 | 0.92 | 800 | 0.2328 | 0.9333 |
0.1912 | 0.98 | 850 | 0.1961 | 0.9533 |
0.1997 | 1.04 | 900 | 0.2004 | 0.9467 |
0.1258 | 1.1 | 950 | 0.2606 | 0.9333 |
0.1519 | 1.15 | 1000 | 0.2418 | 0.9467 |
0.1232 | 1.21 | 1050 | 0.2424 | 0.9467 |
0.2154 | 1.27 | 1100 | 0.2096 | 0.96 |
0.1969 | 1.33 | 1150 | 0.2170 | 0.9467 |
0.1441 | 1.38 | 1200 | 0.2514 | 0.9333 |
0.1031 | 1.44 | 1250 | 0.2544 | 0.9467 |
0.1967 | 1.5 | 1300 | 0.1986 | 0.9533 |
0.1731 | 1.56 | 1350 | 0.2303 | 0.9533 |
0.1486 | 1.61 | 1400 | 0.2409 | 0.9467 |
0.156 | 1.67 | 1450 | 0.2500 | 0.9467 |
0.1355 | 1.73 | 1500 | 0.2121 | 0.9533 |
0.1934 | 1.79 | 1550 | 0.2028 | 0.9533 |
0.1598 | 1.85 | 1600 | 0.1989 | 0.9533 |
0.1568 | 1.9 | 1650 | 0.2124 | 0.9533 |
0.1615 | 1.96 | 1700 | 0.2112 | 0.9533 |
0.1559 | 2.02 | 1750 | 0.2223 | 0.9467 |
0.1029 | 2.08 | 1800 | 0.2865 | 0.94 |
0.1173 | 2.13 | 1850 | 0.2745 | 0.94 |
0.0865 | 2.19 | 1900 | 0.2509 | 0.9467 |
0.1209 | 2.25 | 1950 | 0.2675 | 0.9467 |
0.099 | 2.31 | 2000 | 0.2430 | 0.9533 |
0.1255 | 2.36 | 2050 | 0.2912 | 0.94 |
0.128 | 2.42 | 2100 | 0.2501 | 0.9533 |
0.0891 | 2.48 | 2150 | 0.2649 | 0.9467 |
0.1007 | 2.54 | 2200 | 0.2643 | 0.9533 |
0.1224 | 2.6 | 2250 | 0.2763 | 0.9467 |
0.0764 | 2.65 | 2300 | 0.3227 | 0.94 |
0.146 | 2.71 | 2350 | 0.2670 | 0.9467 |
0.1235 | 2.77 | 2400 | 0.2593 | 0.9467 |
0.0993 | 2.83 | 2450 | 0.2543 | 0.9533 |
0.1311 | 2.88 | 2500 | 0.2474 | 0.9467 |
0.1278 | 2.94 | 2550 | 0.2474 | 0.9533 |
0.1078 | 3.0 | 2600 | 0.3133 | 0.9333 |
0.0988 | 3.06 | 2650 | 0.2558 | 0.9467 |
0.0637 | 3.11 | 2700 | 0.2976 | 0.94 |
0.1057 | 3.17 | 2750 | 0.2916 | 0.94 |
0.0712 | 3.23 | 2800 | 0.2750 | 0.9467 |
0.097 | 3.29 | 2850 | 0.2477 | 0.9533 |
0.1081 | 3.34 | 2900 | 0.2546 | 0.9533 |
0.0844 | 3.4 | 2950 | 0.2970 | 0.94 |
0.0769 | 3.46 | 3000 | 0.2681 | 0.9467 |
0.1032 | 3.52 | 3050 | 0.2608 | 0.9533 |
0.0716 | 3.58 | 3100 | 0.2632 | 0.9533 |
0.0572 | 3.63 | 3150 | 0.3058 | 0.9467 |
0.0701 | 3.69 | 3200 | 0.2884 | 0.9467 |
0.0717 | 3.75 | 3250 | 0.3030 | 0.9467 |
0.0686 | 3.81 | 3300 | 0.3014 | 0.9467 |
0.0816 | 3.86 | 3350 | 0.2745 | 0.9533 |
0.1153 | 3.92 | 3400 | 0.2954 | 0.9467 |
0.0679 | 3.98 | 3450 | 0.2741 | 0.9467 |
0.0753 | 4.04 | 3500 | 0.3146 | 0.94 |
0.0728 | 4.09 | 3550 | 0.2891 | 0.9467 |
0.0579 | 4.15 | 3600 | 0.2904 | 0.9467 |
0.0653 | 4.21 | 3650 | 0.3282 | 0.94 |
0.0733 | 4.27 | 3700 | 0.2829 | 0.9467 |
0.0739 | 4.33 | 3750 | 0.2772 | 0.9467 |
0.1042 | 4.38 | 3800 | 0.2806 | 0.94 |
0.077 | 4.44 | 3850 | 0.2983 | 0.94 |
0.0693 | 4.5 | 3900 | 0.3090 | 0.94 |
0.0833 | 4.56 | 3950 | 0.2895 | 0.9467 |
0.0462 | 4.61 | 4000 | 0.2881 | 0.9467 |
0.0659 | 4.67 | 4050 | 0.2874 | 0.9467 |
0.0531 | 4.73 | 4100 | 0.2913 | 0.9467 |
0.0398 | 4.79 | 4150 | 0.2986 | 0.9467 |
0.0734 | 4.84 | 4200 | 0.2965 | 0.9467 |
0.0461 | 4.9 | 4250 | 0.2984 | 0.9467 |
0.0818 | 4.96 | 4300 | 0.2968 | 0.9467 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.3.2
- Tokenizers 0.13.1