<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
wav2vec2-telugu_150
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the openslr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3312
- Wer: 0.2213
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.096 | 3.84 | 400 | 0.5762 | 0.7029 |
0.427 | 7.69 | 800 | 0.3124 | 0.5148 |
0.208 | 11.54 | 1200 | 0.2994 | 0.4201 |
0.1506 | 15.38 | 1600 | 0.3106 | 0.3844 |
0.1223 | 19.23 | 2000 | 0.3080 | 0.3608 |
0.1094 | 23.08 | 2400 | 0.3206 | 0.3332 |
0.0949 | 26.92 | 2800 | 0.3085 | 0.3253 |
0.0802 | 30.77 | 3200 | 0.3076 | 0.3425 |
0.0713 | 34.61 | 3600 | 0.3280 | 0.3398 |
0.0687 | 38.46 | 4000 | 0.3042 | 0.3081 |
0.0613 | 42.31 | 4400 | 0.3227 | 0.3073 |
0.0548 | 46.15 | 4800 | 0.3152 | 0.3213 |
0.0508 | 50.0 | 5200 | 0.3259 | 0.3107 |
0.0455 | 53.84 | 5600 | 0.3046 | 0.2881 |
0.0427 | 57.69 | 6000 | 0.2779 | 0.3007 |
0.0391 | 61.54 | 6400 | 0.2996 | 0.2693 |
0.0388 | 65.38 | 6800 | 0.3016 | 0.2695 |
0.0339 | 69.23 | 7200 | 0.3225 | 0.2935 |
0.0312 | 73.08 | 7600 | 0.2907 | 0.2942 |
0.029 | 76.92 | 8000 | 0.3148 | 0.3029 |
0.0254 | 80.77 | 8400 | 0.3118 | 0.2996 |
0.0229 | 84.61 | 8800 | 0.3022 | 0.2993 |
0.0231 | 88.46 | 9200 | 0.3203 | 0.2465 |
0.019 | 92.31 | 9600 | 0.3223 | 0.2460 |
0.0173 | 96.15 | 10000 | 0.3178 | 0.2501 |
0.0168 | 100.0 | 10400 | 0.2937 | 0.2415 |
0.015 | 103.84 | 10800 | 0.3062 | 0.2415 |
0.014 | 107.69 | 11200 | 0.3104 | 0.2383 |
0.012 | 111.54 | 11600 | 0.3308 | 0.2408 |
0.0111 | 115.38 | 12000 | 0.3228 | 0.2335 |
0.01 | 119.23 | 12400 | 0.3228 | 0.2374 |
0.0096 | 123.08 | 12800 | 0.3241 | 0.2304 |
0.009 | 126.92 | 13200 | 0.3237 | 0.2295 |
0.0075 | 130.77 | 13600 | 0.3221 | 0.2261 |
0.0065 | 134.61 | 14000 | 0.3310 | 0.2277 |
0.0064 | 138.46 | 14400 | 0.3348 | 0.2266 |
0.0064 | 142.31 | 14800 | 0.3330 | 0.2229 |
0.0056 | 146.15 | 15200 | 0.3310 | 0.2229 |
0.0053 | 150.0 | 15600 | 0.3312 | 0.2213 |
Test results
WER(without LM): 42.8%
WER(with LM): 42%
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.2
ps: 150 in repo name denotes number of epochs