generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

combined-MTL9

This model is a fine-tuned version of yongjian/wav2vec2-large-a on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Wer
76.4918 0.35 500 3.4171 1.0
2.9927 0.69 1000 2.4743 1.0667
2.2033 1.04 1500 1.6693 1.25
1.6165 1.39 2000 1.5341 1.1808
1.4208 1.74 2500 1.3148 1.1179
1.2858 2.08 3000 1.2272 1.0872
1.1317 2.43 3500 1.0865 1.0731
1.0668 2.78 4000 1.0798 1.0474
1.0429 3.12 4500 1.4627 1.0936
0.9615 3.47 5000 1.2540 1.0090
0.975 3.82 5500 0.9936 0.9679
0.8517 4.17 6000 1.1039 1.0282
0.8281 4.51 6500 1.0609 0.9897
0.8413 4.86 7000 0.9513 0.9397
0.7618 5.21 7500 1.1656 0.9718
0.7173 5.56 8000 1.1974 0.9603
0.7449 5.9 8500 1.0144 0.9731
0.6762 6.25 9000 1.1774 0.9231
0.6749 6.6 9500 1.1823 0.9205
0.6776 6.94 10000 0.9167 0.9244
0.5937 7.29 10500 1.3344 0.9769
0.6488 7.64 11000 1.0245 0.9692
0.6116 7.99 11500 0.9444 0.9141
0.5497 8.33 12000 0.9499 0.9692
0.5937 8.68 12500 1.1087 0.9231
0.5268 9.03 13000 1.3408 0.9269
0.5078 9.38 13500 1.1737 0.9038
0.497 9.72 14000 0.9963 0.8987
0.5231 10.07 14500 1.3247 0.9590
0.4651 10.42 15000 1.1988 0.9308
0.481 10.76 15500 1.0034 0.9308
0.481 11.11 16000 1.0040 0.8782
0.4751 11.46 16500 0.8824 0.8538
0.4554 11.81 17000 0.9741 0.8821
0.426 12.15 17500 0.8552 0.8615
0.4186 12.5 18000 1.0646 0.8833
0.4154 12.85 18500 0.9618 0.8936
0.5115 13.19 19000 1.0312 0.8910
0.3564 13.54 19500 1.0686 0.8769
0.3927 13.89 20000 1.2533 0.9103
0.3628 14.24 20500 1.2945 0.8872
0.3808 14.58 21000 1.0195 0.8538
0.3981 14.93 21500 1.0388 0.8808
0.3337 15.28 22000 1.0464 0.8923
0.3092 15.62 22500 1.0843 0.8705
0.378 15.97 23000 1.0880 0.8859
0.3231 16.32 23500 0.9205 0.8782
0.3588 16.67 24000 1.0064 0.8962
0.3048 17.01 24500 0.9130 0.8705
0.3 17.36 25000 1.0100 0.9077
0.3045 17.71 25500 1.0559 0.9077
0.3024 18.06 26000 1.1225 0.9026
0.2614 18.4 26500 1.0911 0.8897
0.2755 18.75 27000 1.0872 0.8808
0.2798 19.1 27500 1.2911 0.9154
0.2455 19.44 28000 1.0646 0.8821
0.2524 19.79 28500 1.3356 0.9154
0.2435 20.14 29000 1.1257 0.8641
0.2458 20.49 29500 1.2221 0.8667
0.2216 20.83 30000 1.1364 0.8769
0.234 21.18 30500 1.2094 0.8808
0.233 21.53 31000 1.1604 0.8910
0.2536 21.88 31500 1.0934 0.8808
0.1885 22.22 32000 1.2177 0.8718
0.2186 22.57 32500 1.0539 0.8667
0.1991 22.92 33000 1.2222 0.8641
0.2027 23.26 33500 1.3863 0.8577
0.193 23.61 34000 1.2293 0.8705
0.2054 23.96 34500 1.3398 0.8769
0.2197 24.31 35000 1.3138 0.8705
0.1898 24.65 35500 1.2897 0.8679
0.1933 25.0 36000 1.2666 0.8769
0.1632 25.35 36500 1.2758 0.8756
0.1869 25.69 37000 1.1811 0.8603
0.1731 26.04 37500 1.2511 0.8679
0.1821 26.39 38000 1.3391 0.8718
0.1648 26.74 38500 1.2505 0.8628
0.1909 27.08 39000 1.2984 0.85
0.1902 27.43 39500 1.2261 0.8487
0.1449 27.78 40000 1.2853 0.8487
0.1583 28.12 40500 1.3361 0.8628
0.148 28.47 41000 1.3638 0.8654
0.1648 28.82 41500 1.3380 0.8603
0.1461 29.17 42000 1.3561 0.8603
0.1565 29.51 42500 1.3489 0.8615
0.16 29.86 43000 1.3413 0.8603

Framework versions