<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-base-patch16-224-in21k-finetuned-cifar10_album_vitVMMRdb_make_model_album_pred
This model is a fine-tuned version of aaraki/vit-base-patch16-224-in21k-finetuned-cifar10 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5462
- Accuracy: 0.8594
- Precision: 0.8556
- Recall: 0.8594
- F1: 0.8544
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
4.6112 | 1.0 | 839 | 4.5615 | 0.1425 | 0.0837 | 0.1425 | 0.0646 |
3.1177 | 2.0 | 1678 | 2.9595 | 0.4240 | 0.3424 | 0.4240 | 0.3283 |
2.0793 | 3.0 | 2517 | 2.0048 | 0.5771 | 0.5081 | 0.5771 | 0.5029 |
1.4566 | 4.0 | 3356 | 1.4554 | 0.6760 | 0.6333 | 0.6760 | 0.6280 |
1.1307 | 5.0 | 4195 | 1.1319 | 0.7350 | 0.7027 | 0.7350 | 0.7013 |
0.9367 | 6.0 | 5034 | 0.9328 | 0.7738 | 0.7546 | 0.7738 | 0.7503 |
0.7783 | 7.0 | 5873 | 0.8024 | 0.7986 | 0.7893 | 0.7986 | 0.7819 |
0.6022 | 8.0 | 6712 | 0.7187 | 0.8174 | 0.8098 | 0.8174 | 0.8055 |
0.5234 | 9.0 | 7551 | 0.6635 | 0.8313 | 0.8220 | 0.8313 | 0.8217 |
0.4298 | 10.0 | 8390 | 0.6182 | 0.8388 | 0.8337 | 0.8388 | 0.8302 |
0.3618 | 11.0 | 9229 | 0.5953 | 0.8455 | 0.8394 | 0.8455 | 0.8382 |
0.3262 | 12.0 | 10068 | 0.5735 | 0.8501 | 0.8443 | 0.8501 | 0.8436 |
0.3116 | 13.0 | 10907 | 0.5612 | 0.8527 | 0.8488 | 0.8527 | 0.8471 |
0.2416 | 14.0 | 11746 | 0.5524 | 0.8558 | 0.8500 | 0.8558 | 0.8496 |
0.2306 | 15.0 | 12585 | 0.5489 | 0.8572 | 0.8525 | 0.8572 | 0.8519 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2