<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
TUF_BERT_5E
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3251
- Accuracy: 0.9467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4078 | 0.1 | 50 | 0.2430 | 0.92 |
0.2488 | 0.2 | 100 | 0.1465 | 0.94 |
0.1966 | 0.3 | 150 | 0.1284 | 0.96 |
0.2096 | 0.4 | 200 | 0.2879 | 0.9067 |
0.2015 | 0.5 | 250 | 0.1629 | 0.9467 |
0.1692 | 0.59 | 300 | 0.2165 | 0.9133 |
0.1794 | 0.69 | 350 | 0.1535 | 0.9533 |
0.1975 | 0.79 | 400 | 0.1429 | 0.9333 |
0.1394 | 0.89 | 450 | 0.2384 | 0.92 |
0.191 | 0.99 | 500 | 0.2198 | 0.94 |
0.0907 | 1.09 | 550 | 0.1270 | 0.9467 |
0.073 | 1.19 | 600 | 0.2016 | 0.94 |
0.1594 | 1.29 | 650 | 0.2078 | 0.9267 |
0.087 | 1.39 | 700 | 0.3312 | 0.9333 |
0.0961 | 1.49 | 750 | 0.3704 | 0.92 |
0.1225 | 1.58 | 800 | 0.1686 | 0.9467 |
0.0969 | 1.68 | 850 | 0.1525 | 0.9333 |
0.0942 | 1.78 | 900 | 0.1924 | 0.94 |
0.0681 | 1.88 | 950 | 0.1825 | 0.9467 |
0.1295 | 1.98 | 1000 | 0.1360 | 0.9333 |
0.0626 | 2.08 | 1050 | 0.2014 | 0.94 |
0.0372 | 2.18 | 1100 | 0.2030 | 0.9467 |
0.0077 | 2.28 | 1150 | 0.2615 | 0.9467 |
0.0393 | 2.38 | 1200 | 0.4256 | 0.9267 |
0.0492 | 2.48 | 1250 | 0.3057 | 0.94 |
0.0184 | 2.57 | 1300 | 0.1308 | 0.9733 |
0.0209 | 2.67 | 1350 | 0.2848 | 0.9467 |
0.0328 | 2.77 | 1400 | 0.1862 | 0.96 |
0.0333 | 2.87 | 1450 | 0.2347 | 0.96 |
0.0527 | 2.97 | 1500 | 0.3855 | 0.9333 |
0.0685 | 3.07 | 1550 | 0.3174 | 0.94 |
0.0217 | 3.17 | 1600 | 0.2320 | 0.9533 |
0.0036 | 3.27 | 1650 | 0.3219 | 0.9333 |
0.0015 | 3.37 | 1700 | 0.1649 | 0.9733 |
0.0177 | 3.47 | 1750 | 0.3785 | 0.94 |
0.0142 | 3.56 | 1800 | 0.1420 | 0.9733 |
0.0319 | 3.66 | 1850 | 0.4057 | 0.9333 |
0.0254 | 3.76 | 1900 | 0.1824 | 0.96 |
0.0092 | 3.86 | 1950 | 0.2400 | 0.9533 |
0.0306 | 3.96 | 2000 | 0.2238 | 0.96 |
0.0118 | 4.06 | 2050 | 0.2623 | 0.9533 |
0.0097 | 4.16 | 2100 | 0.3642 | 0.9467 |
0.0132 | 4.26 | 2150 | 0.3235 | 0.9467 |
0.0155 | 4.36 | 2200 | 0.3535 | 0.9467 |
0.0043 | 4.46 | 2250 | 0.3236 | 0.9467 |
0.0004 | 4.55 | 2300 | 0.2984 | 0.9467 |
0.009 | 4.65 | 2350 | 0.2941 | 0.9467 |
0.0068 | 4.75 | 2400 | 0.2936 | 0.9467 |
0.0102 | 4.85 | 2450 | 0.3138 | 0.9467 |
0.0015 | 4.95 | 2500 | 0.3251 | 0.9467 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2