stable-diffusion stable-diffusion-diffusers image-to-image

Stable Diffusion Image Variations Model Card

This version of Stable Diffusion has been fine tuned from CompVis/stable-diffusion-v1-3-original to accept CLIP image embedding rather than text embeddings. This allows the creation of "image variations" similar to DALLE-2 using Stable Diffusion. This version of the weights has been ported to huggingface Diffusers, to use this with the Diffusers library requires the Lambda Diffusers repo.

Example

First clone Lambda Diffusers and install any requirements (in a virtual environment in the example below):

git clone https://github.com/LambdaLabsML/lambda-diffusers.git
cd lambda-diffusers
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

Then run the following python code:

from pathlib import Path
from lambda_diffusers import StableDiffusionImageEmbedPipeline
from PIL import Image
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionImageEmbedPipeline.from_pretrained("lambdalabs/sd-image-variations-diffusers")
pipe = pipe.to(device)

im = Image.open("your/input/image/here.jpg")
num_samples = 4
image = pipe(num_samples*[im], guidance_scale=3.0)
image = image["sample"]

base_path = Path("outputs/im2im")
base_path.mkdir(exist_ok=True, parents=True)
for idx, im in enumerate(image):
    im.save(base_path/f"{idx:06}.jpg")

Training

Training Data The model developers used the following dataset for training the model:

Training Procedure This model is fine tuned from Stable Diffusion v1-3 where the text encoder has been replaced with an image encoder. The training procedure is the same as for Stable Diffusion except for the fact that images are encoded through a ViT-L/14 image-encoder including the final projection layer to the CLIP shared embedding space.

Training was done using a [modified version of the original Stable Diffusion training code]((https://github.com/justinpinkney/stable-diffusion), the original version of the weights is here.

Uses

The following section is adapted from the Stable Diffusion model card

Direct Use

The model is intended for research purposes only. Possible research areas and tasks include

Excluded uses are described below.

Misuse, Malicious Use, and Out-of-Scope Use

The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.

Out-of-Scope Use

The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.

Misuse and Malicious Use

Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:

Limitations and Bias

Limitations

Bias

While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of LAION-2B(en), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.

Safety Module

The intended use of this model is with the Safety Checker in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the CLIPModel after generation of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept.

This model card was written by: Justin Pinkney and is based on the Stable Diffusion model card.