<h1>Tamil Named Entity Recognition</h1> Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Tamil language.
Label ID and its corresponding label name
Label ID | Label Name |
---|---|
0 | O |
1 | B-PER |
2 | I-PER |
3 | B-ORG |
4 | I-ORG |
5 | B-LOC |
6 | I-LOC |
<h1>Results</h1>
Step | Training Loss | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 |
---|---|---|---|---|---|---|---|---|---|
1000 | 0.386900 | 0.300006 | 0.833469 | 0.824748 | 0.829086 | 0.912857 | 0.835343 | 0.781625 | 0.867752 |
2000 | 0.210200 | 0.251389 | 0.845455 | 0.842052 | 0.843750 | 0.924861 | 0.851711 | 0.790198 | 0.886515 |
3000 | 0.140000 | 0.264964 | 0.866952 | 0.856137 | 0.861510 | 0.930141 | 0.874872 | 0.818150 | 0.885203 |
4000 | 0.095400 | 0.298542 | 0.860871 | 0.882696 | 0.871647 | 0.935692 | 0.881348 | 0.829285 | 0.899245 |
5000 | 0.062200 | 0.296011 | 0.871805 | 0.878471 | 0.875125 | 0.938806 | 0.875434 | 0.850889 | 0.898148 |
6000 | 0.042200 | 0.320418 | 0.868416 | 0.879074 | 0.873713 | 0.937497 | 0.877588 | 0.833611 | 0.907737 |
Example
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Ambareeshkumar/BERT-Tamil")
model = AutoModelForTokenClassification.from_pretrained("Ambareeshkumar/BERT-Tamil")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "இந்திய"
ner_results = nlp(example)
ner_results