<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
Whisper Large-v2 Latvian
This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 lv dataset. It achieves the following results on the evaluation set:
- Loss: 0.2634
- Wer: 17.7799
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2124 | 3.02 | 200 | 0.2485 | 18.4061 |
0.0704 | 6.05 | 400 | 0.2634 | 17.7799 |
0.0379 | 10.01 | 600 | 0.3103 | 17.8178 |
0.0228 | 13.03 | 800 | 0.3555 | 18.4061 |
0.0139 | 16.06 | 1000 | 0.3733 | 18.4535 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2